Geometry of canonical bases and mirror symmetry
详细信息    查看全文
  • 作者:Alexander Goncharov ; Linhui Shen
  • 刊名:Inventiones Mathematicae
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:202
  • 期:2
  • 页码:487-633
  • 全文大小:2,889 KB
  • 参考文献:1.Abouzaid, M.: A topological model for the Fukaya categories of plumbings. J. Differential Geom. 87(1), 1–80 (2011). arXiv:​0904.​1474
    2.Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. Geom. Topol. 14(2), 627–718 (2010)MATH MathSciNet CrossRef
    3.Anderson, J.E.: A polytope calculus for semisimple groups. Duke Math. J. 116(3), 567–588 (2003)MATH MathSciNet CrossRef
    4.Auroux, D.: Mirror symmetry and T-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. 1, 51–91 (2007). arXiv:​0706.​3207
    5.Auroux, D.: Special Lagrangian fibrations, wall-crossing, and mirror symmetry. In: Cao, H.D., Yau, S.T. (eds.) Surveys in Differential Geometry, vol. 13. International Press, Somerville, MA (2009). arXiv:​0902.​1595
    6.Batyrev, V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3(3), 493–535 (1994). arXiv:​alg-geom/​9310003
    7.Braden, T.: Hyperbolic localization of intersection cohomology. Transform. Groups 8(3), 209–216 (2003). arXiv:​math/​020225
    8.Beilinson, A.A., Deligne, J., Bernstein, P.: Faisceaux pervers. Asterisque 100, 5–171 (1982)MathSciNet
    9.Beilinson, A.A., Drinfeld, V.: Chiral algebras. American Mathemat ical Society Colloquium Publications, vol. 51. American Mathematical Society, Providence (2004)
    10.Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals, GAFA (Tel Aviv, 1999). Geom. Funct. Anal. 2000. Special Volume, Part I, pp. 188–236 (2000). arXiv:​math/​9912105
    11.Berenstein A., Kazhdan D.: Geometric and unipotent crystals II: from unipotent bicrystals to crystal bases, Contemp. Math., vol. 433, pp. 13–88. Amer. Math. Soc., Providence (2007). arXiv:​math/​0601391
    12.Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive matrices. Invent. Math. 143(1), 77–128 (2001). arXiv:​math.​RT/​9912012
    13.Braverman, A., Gaitsgory, D.: Crystals via the affine Grassmannian. Duke Math. J. 107(3), 561–575 (2001). arXiv:​math/​9909077
    14.De Concini, C., Kazhdan, D.: Special bases for \(S_N\) and \(GL(n)\) . Isr. J. Math. 40(3–4), 275–290 (1981)MATH CrossRef
    15.Dyckerhoff, T., Kapranov, M.: Triangulated surfaces in triangulated categories (2013). arXiv:​1306.​2545
    16.Eguchi, T., Hori, K., Xiong, C.-S.: Gravitational quantum cohomology. Int. J. Mod. Phys. A12, 1743–1782 (1997). arXiv:​hep-th/​9605225 MathSciNet CrossRef
    17.Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. IHES, n. 103, 1–212 (2006). arXiv:​math.​AG/​0311149
    18.Fock, V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. L’Ecole Norm. Sup. (2009). arXiv:​math.​AG/​0311245
    19.Fock, V.V., Goncharov, A.B.: Dual Teichmuller and lamination spaces. In: Papadopoulos, A (ed.) Handbook of Teichmüller theory. IRMA Lectures in Mathematics and Theoretical Physics 11, vol. I, pp. 647–684. European Mathematical Society, Zürich (2007). arXiv:​math/​0510312
    20.Fock, V.V., Goncharov, A.B.: Cluster \({X}\) -varieties at infinity. To appear in Moscow Math. J arXiv:​1104.​0407
    21.Fock, V., Goncharov, A.B.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175, 223–286 (2009). arXiv:​math/​0702397
    22.Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. JAMS 12(2), 335–380 (1999). arXiv:​math.​RT/​9802056
    23.Fomin, S., Zelevinsky, A.: Cluster algebras. I. J. Am. Math. Soc. 15(2), 497–529 (2002)MATH MathSciNet CrossRef
    24.Frenkel, I., Khovanov, M.L Canonical bases in tensor products and graphical calculus for \(U_q(sl_2)\) . Duke Math. J. 87(3), 409–480 (1997)
    25.Gaussent, S.: The fibre of the Bott–Samelson resolution. Indag. Math. N. S. 12(4), 453–468 (2001)
    26.Gaussent, S.: Corrections and new results on the fiber of the Bott–Samelson resolution. Indag. Math. N.S. 14(1), 31–33 (2003)
    27.Gelfand, I.M., Zelevinsky, A.: Multiplicities and proper bases for \(GL_n\) . Group Theor Methods Phys. 2, 147–159 (1985)
    28.Gelfand, I.M., Tsetlin, M.: Finite dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR 71, 825–828 (1950)MathSciNet
    29.Gelfand, I.M., Tsetlin, M.: Finite dimensional representations of the group of orthogonal matrices. Doklady Akad. Nauk SSSR 71, 1017–1020 (1950)MathSciNet
    30.Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a Gauss–Givental representation of quantum Toda chain wave function, Int. Math. Res. Notices (2006)
    31.Gerasimov, A., Lebedev, D., Oblezin, S.: Givental integral representation for classical groups (2006). arXiv:​math/​0608152
    32.Gerasimov, A., Lebedev, D., Oblezin, S.: New integral representations of Whittaker functions for classical Lie groups. In: Russian Mathematical Surveys, vol. 67, no. 1, pp. 1–92 (2012). arXiv:​0705.​2886G
    33.Gerasimov, A., Lebedev, D., Oblezin, S.: Parabolic Whittaker functions and topological field theories I. Commun. Number Theory Phys. 5(1), 135–201 (2011). arXiv:​1002.​2622G
    34.Ginzburg, V.: Perverse sheaves on a loop group and Langlands duality (1995). arXiv:​alg-geom/​9511007
    35.Givental, A.: Homological geometry and mirror symmetry. Proc. ICM-94, Zürich, pp. 374–387 (1994)
    36.Givental, A., Kim, B.: Quantum cohomology of flag manifolds and Toda lattices. Commun. Math. Phys. 168(3), 609–641 (1995)MATH MathSciNet CrossRef
    37.Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. In: Topics in singularity theory. American Mathematical Society translations, vol. 180, pp. 103–115. American Mathematical Society, Providence, RI (1997). arXiv:​alg-geom/​9612001
    38.Givental, A., Lee, Y.-P.: Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups . Invent. Math. 151(1), 193–219 (2003). arXiv:​math/​0108105
    39.Goncharov, A.B., Shen, L.: Geometry of canonical bases and mirror symmetry (2013). arXiv:​1309.​5922
    40.Gross, M., Hacking P., Keel S.: Mirror symmetry for log Calabi–Yau surfaces I (2013). arXiv:​1106.​4977
    41.Gross, M., Hacking P., Keel S.: Birational geometry of cluster algebras (2013). arXiv:​1309.​2573
    42.Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands program . In: Current developments in mathematics, pp. 35–180. Int. Press, Somerville, MA (2008). arXiv:​hep-th/​0612073
    43.Hori, K., Vafa, C.: Mirror symmetry (2003). arXiv:​hep-th/​0002222
    44.Joseph, A.: Quantum Groups and Their Primitive Ideals. Springer, Berlin (1995)MATH CrossRef
    45.Kamnitzer, J.: Mirkovich–Vilonen cycles and polytopes. Ann. Math. 171(1), 245–294 (2010). arXiv:​math/​0501365
    46.Kamnitzer, J.: Hives and the fibres of the convolution morphism. Selecta Math. (N.S.) 13(3), 483–496 (2007). arXiv:​0705.​1698
    47.Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69(2), 455–485 (1993)MATH MathSciNet CrossRef
    48.Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007). arXiv:​hep-th/​0604151
    49.Kontsevich, M.: Symplectic geometry of homological algebra. Arbeitstagung (2007)
    50.Kontsevich, M.: Symplectic geometry of homological algebra. A talk at Arbeitstagung, Bonn. http://​www.​ihes.​fr/​~maxim/​publicationsangl​ais.​html (2009)
    51.Kontsevich, M.: Talk at the Gelfand 100 conference at MIT (2013)
    52.Kontsevich, M., Soibelman, Y.: Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry (2013). arXiv:​1303.​3253
    53.Kostant, B.: Quantization and representation theory. Representation theory of Lie Groups. London Math. Soc. Lecture Notes, vol. 34, pp. 287–316 (1977)
    54.Knutson, A., Tao, T.: The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture (1998). arXiv:​math/​9807160
    55.Knutson, A., Tao, T., Woodward, Ch.: A positive proof of the Littlewood–Richardson rule using the octahedron recurrence. Electron. J. Combin. 11 (2004). arXiv:​math/​0306274
    56.Lam, Th.: Whittaker functions, geometric crystals, and quantum Schubert calculus (2013). arXiv:​1308.​5451
    57.Le, I.: Higher laminations and affine buildings (2013). arXiv:​1209.​0812
    58.Lusztig, G.: Total posistivity in reductive groups. Lie Theory and Geometry. In Honor of B. Kostant, Progr. in Math., vol. 123, pp. 531–568. Birkhauser, Basel (1994)
    59.Lusztig, G.: Canonical basis arising from quantum canonical algebras. JAMS 3(2), 447–498 (1990)MATH MathSciNet
    60.Lusztig, G.: An algebraic geometric parametrisation of the canonical basis. Adv. Math. 120, 172–190 (1996)MathSciNet CrossRef
    61.Lusztig, G.: Canonical bases in tensor products. Proc. Natl. Acad. Sci. USA 89(17), 8177–8179 (1992)MATH MathSciNet CrossRef
    62.Lusztig, G.: Singularities, character formulas and a q-analog of weight multipicities. Astérisque 101–102, 208–229 (1983)MathSciNet
    63.Malkin, A.: Tensor product varieties and crystals: the ADE case. Duke Math. J. 116(3), 477–524 (2003). arXiv:​0103025
    64.Marsh, R., Rietsch K.: The B-model connection and mirror symmetry for Grassmannians (2013). arXiv:​1307.​1085
    65.Mirkovic, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2) 166(1), 95–143 (2007)MATH MathSciNet CrossRef
    66.Nakajima, H.: Quiver varieties and tensor products. Invent. Math. 146(2), 399–449 (2001). arXiv:​math.​QA/​0103008
    67.Nakajima, H.: Geometric construction of representations of affine algebras. In: Proceedings of the International Congress of Mathematicians, Beijing, vol. I, 423438. Higher Ed. Press, Beijing (2002). arXiv:​math/​0212401
    68.Retakh, V., Zelevinsky, A.: The fundamental affine space and canonical basis in irreducible representations of the group \(Sp_4\) . Doklady AN SSSR 300(1), 31–35 (1988)MathSciNet
    69.Rietsch, K.: A mirror symmetric construction of \(qH_T(G/P)_{(q)}\) . Adv. Math. 217(6), 2401–2442 (2008). arXiv:​math/​0511124 MATH MathSciNet CrossRef
    70.Rietsch, K.: A mirror symmetric solution to the quantum Toda lattice. Comm. Math. Phys. 309(1), 23–49 (2012). arXiv:​0705.​3202
    71.Seidel, P.: Graded Lagrangian submanifolds. Bull. Soc. Math. Fr. 128, 103–149 (2000)MATH MathSciNet
    72.Seidel, P.: Fukaya categories and Picard–Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zrich (2008)
    73.Sibilla, N., Treumann, D., Zaslow, E.: Ribbon graphs and mirror symmetry I . Selecta Math. (N.S.) 20(4), 979–1002 (2014). arXiv:​1103.​2462
    74.Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003). arXiv:​math.​AG/​0205236
    75.Teleman, C.: Gauge theory and mirror symmetry. ICM, Seoul (2014). arXiv:​1404.​6305
    76.Witten, E.: Two dimensional gravity and intersection theory on moduli spaces. Surveys Differ. Geom. 1, 243–310 (1991)CrossRef
  • 作者单位:Alexander Goncharov (1)
    Linhui Shen (1)

    1. Mathematics Department, Yale University, New Haven, CT, 06520, USA
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1297
文摘
A decorated surface \(S\) is an oriented surface with boundary and a finite, possibly empty, set of special points on the boundary, considered modulo isotopy. Let \(\mathrm{G}\) be a split reductive group over \({\mathbb Q}\). A pair \((\mathrm{G}, S)\) gives rise to a moduli space \({\mathcal A}_{\mathrm{G}, S}\), closely related to the moduli space of \(\mathrm{G}\)-local systems on \(S\). It is equipped with a positive structure (Fock and Goncharov, Publ Math IHES 103:1–212, 2006). So a set \({\mathcal A}_{\mathrm{G}, S}({\mathbb Z}^t)\) of its integral tropical points is defined. We introduce a rational positive function \({\mathcal W}\) on the space \({\mathcal A}_{\mathrm{G}, S}\), called the potential. Its tropicalisation is a function \({\mathcal W}^t: {\mathcal A}_{\mathrm{G}, S}({\mathbb Z}^t) \rightarrow {\mathbb Z}\). The condition \({\mathcal W}^t\ge 0\) defines a subset of positive integral tropical points \({\mathcal A}^+_{\mathrm{G}, S}({\mathbb Z}^t)\). For \(\mathrm{G=SL}_2\), we recover the set of positive integral \({\mathcal A}\)-laminations on \(S\) from Fock and Goncharov (Publ Math IHES 103:1–212, 2006). We prove that when \(S\) is a disc with \(n\) special points on the boundary, the set \({\mathcal A}^+_{\mathrm{G}, S}({\mathbb Z}^t)\) parametrises top dimensional components of the fibers of the convolution maps. Therefore, via the geometric Satake correspondence (Lusztig, Astérisque 101–102:208–229, 1983; Ginzburg,1995; Mirkovic and Vilonen, Ann Math (2) 166(1):95–143, 2007; Beilinson and Drinfeld, Chiral algebras. American Mathematical Society Colloquium Publications, vol. 51, 2004) they provide a canonical basis in the tensor product invariants of irreducible modules of the Langlands dual group \(\mathrm{G}^L\): $$\begin{aligned} (V_{\lambda _1}\otimes \ldots \otimes V_{\lambda _n})^{\mathrm{G}^L}. \end{aligned}$$ (1)When \(\mathrm{G=GL}_m\), \(n=3\), there is a special coordinate system on \({\mathcal A}_{\mathrm{G}, S}\) (Fock and Goncharov, Publ Math IHES 103:1–212, 2006). We show that it identifies the set \({\mathcal A}^+_{\mathrm{GL_m}, S}({\mathbb Z}^t)\) with Knutson–Tao’s hives (Knutson and Tao, The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture, 1998). Our result generalises a theorem of Kamnitzer (Hives and the fibres of the convolution morphism, 2007), who used hives to parametrise top components of convolution varieties for \(\mathrm{G=GL}_m\), \(n=3\). For \(\mathrm{G=GL}_m\), \(n>3\), we prove Kamnitzer’s conjecture (Kamnitzer, Hives and the fibres of the convolution morphism, 2012). Our parametrisation is naturally cyclic invariant. We show that for any \(\mathrm{G}\) and \(n=3\) it agrees with Berenstein–Zelevinsky’s parametrisation (Berenstein and Zelevinsky, Invent Math 143(1):77–128, 2001), whose cyclic invariance is obscure. We define more general positive spaces with potentials \(({\mathcal A}, {\mathcal W})\), parametrising mixed configurations of flags. Using them, we define a generalization of Mirković–Vilonen cycles (Mirkovic and Vilonen, Ann Math (2) 166(1):95–143, 2007), and a canonical basis in \(V_{\lambda _1}\otimes \ldots \otimes V_{\lambda _n}\), generalizing the Mirković–Vilonen basis in \(V_{\lambda }\). Our construction comes naturally with a parametrisation of the generalised MV cycles. For the classical MV cycles it is equivalent to the one discovered by Kamnitzer (Mirkovich–Vilonen cycles and polytopes, 2005). We prove that the set \({\mathcal A}^+_{\mathrm{G}, S}({\mathbb Z}^t)\) parametrises top dimensional components of a new moduli space, surface affine Grasmannian, generalising the fibers of the convolution maps. These components are usually infinite dimensional. We define their dimension being an element of a \({\mathbb Z}\)-torsor, rather then an integer. We define a new moduli space \(\mathrm{Loc}_{G^L, S}\), which reduces to the moduli spaces of \(G^L\)-local systems on \(S\) if \(S\) has no special points. The set \({\mathcal A}^+_{\mathrm{G}, S}({\mathbb Z}^t)\) parametrises a basis in the linear space of regular functions on \(\mathrm{Loc}_{G^L, S}\). We suggest that the potential \({\mathcal W}\) itself, not only its tropicalization, is important—it should be viewed as the potential for a Landau–Ginzburg model on \({\mathcal A}_{\mathrm{G}, S}\). We conjecture that the pair \(({\mathcal A}_{\mathrm{G}, S}, {\mathcal W})\) is the mirror dual to \(\mathrm{Loc}_{G^L, S}\). In a special case, we recover Givental’s description of the quantum cohomology connection for flag varieties and its generalisation (Gerasimov et al., New integral representations of Whittaker functions for classical Lie groups, 2012; Rietsch, A mirror symmetric solution to the quantum Toda lattice, 2012). We formulate equivariant homological mirror symmetry conjectures parallel to our parametrisations of canonical bases. Page %P Close Plain text Look Inside Reference tools Export citation EndNote (.ENW) JabRef (.BIB) Mendeley (.BIB) Papers (.RIS) Zotero (.RIS) BibTeX (.BIB) Add to Papers Other actions Register for Journal Updates About This Journal Reprints and Permissions Share Share this content on Facebook Share this content on Twitter Share this content on LinkedIn Related Content Supplementary Material (0) References (76) References1.Abouzaid, M.: A topological model for the Fukaya categories of plumbings. J. Differential Geom. 87(1), 1–80 (2011). arXiv:​0904.​1474 2.Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. Geom. Topol. 14(2), 627–718 (2010)MATHMathSciNetCrossRef3.Anderson, J.E.: A polytope calculus for semisimple groups. Duke Math. J. 116(3), 567–588 (2003)MATHMathSciNetCrossRef4.Auroux, D.: Mirror symmetry and T-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. 1, 51–91 (2007). arXiv:​0706.​3207 5.Auroux, D.: Special Lagrangian fibrations, wall-crossing, and mirror symmetry. In: Cao, H.D., Yau, S.T. (eds.) Surveys in Differential Geometry, vol. 13. International Press, Somerville, MA (2009). arXiv:​0902.​1595 6.Batyrev, V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3(3), 493–535 (1994). arXiv:​alg-geom/​9310003 7.Braden, T.: Hyperbolic localization of intersection cohomology. Transform. Groups 8(3), 209–216 (2003). arXiv:​math/​020225 8.Beilinson, A.A., Deligne, J., Bernstein, P.: Faisceaux pervers. Asterisque 100, 5–171 (1982)MathSciNet9.Beilinson, A.A., Drinfeld, V.: Chiral algebras. American Mathemat ical Society Colloquium Publications, vol. 51. American Mathematical Society, Providence (2004)10.Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals, GAFA (Tel Aviv, 1999). Geom. Funct. Anal. 2000. Special Volume, Part I, pp. 188–236 (2000). arXiv:​math/​9912105 11.Berenstein A., Kazhdan D.: Geometric and unipotent crystals II: from unipotent bicrystals to crystal bases, Contemp. Math., vol. 433, pp. 13–88. Amer. Math. Soc., Providence (2007). arXiv:​math/​0601391 12.Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive matrices. Invent. Math. 143(1), 77–128 (2001). arXiv:​math.​RT/​9912012 13.Braverman, A., Gaitsgory, D.: Crystals via the affine Grassmannian. Duke Math. J. 107(3), 561–575 (2001). arXiv:​math/​9909077 14.De Concini, C., Kazhdan, D.: Special bases for \(S_N\) and \(GL(n)\). Isr. J. Math. 40(3–4), 275–290 (1981)MATHCrossRef15.Dyckerhoff, T., Kapranov, M.: Triangulated surfaces in triangulated categories (2013). arXiv:​1306.​2545 16.Eguchi, T., Hori, K., Xiong, C.-S.: Gravitational quantum cohomology. Int. J. Mod. Phys. A12, 1743–1782 (1997). arXiv:​hep-th/​9605225 MathSciNetCrossRef17.Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. IHES, n. 103, 1–212 (2006). arXiv:​math.​AG/​0311149 18.Fock, V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. L’Ecole Norm. Sup. (2009). arXiv:​math.​AG/​0311245 19.Fock, V.V., Goncharov, A.B.: Dual Teichmuller and lamination spaces. In: Papadopoulos, A (ed.) Handbook of Teichmüller theory. IRMA Lectures in Mathematics and Theoretical Physics 11, vol. I, pp. 647–684. European Mathematical Society, Zürich (2007). arXiv:​math/​0510312 20.Fock, V.V., Goncharov, A.B.: Cluster \({X}\)-varieties at infinity. To appear in Moscow Math. J arXiv:​1104.​0407 21.Fock, V., Goncharov, A.B.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175, 223–286 (2009). arXiv:​math/​0702397 22.Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. JAMS 12(2), 335–380 (1999). arXiv:​math.​RT/​9802056 23.Fomin, S., Zelevinsky, A.: Cluster algebras. I. J. Am. Math. Soc. 15(2), 497–529 (2002)MATHMathSciNetCrossRef24.Frenkel, I., Khovanov, M.L Canonical bases in tensor products and graphical calculus for \(U_q(sl_2)\). Duke Math. J. 87(3), 409–480 (1997)25.Gaussent, S.: The fibre of the Bott–Samelson resolution. Indag. Math. N. S. 12(4), 453–468 (2001)26.Gaussent, S.: Corrections and new results on the fiber of the Bott–Samelson resolution. Indag. Math. N.S. 14(1), 31–33 (2003)27.Gelfand, I.M., Zelevinsky, A.: Multiplicities and proper bases for \(GL_n\). Group Theor Methods Phys. 2, 147–159 (1985)28.Gelfand, I.M., Tsetlin, M.: Finite dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR 71, 825–828 (1950)MathSciNet29.Gelfand, I.M., Tsetlin, M.: Finite dimensional representations of the group of orthogonal matrices. Doklady Akad. Nauk SSSR 71, 1017–1020 (1950)MathSciNet30.Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a Gauss–Givental representation of quantum Toda chain wave function, Int. Math. Res. Notices (2006)31.Gerasimov, A., Lebedev, D., Oblezin, S.: Givental integral representation for classical groups (2006). arXiv:​math/​0608152 32.Gerasimov, A., Lebedev, D., Oblezin, S.: New integral representations of Whittaker functions for classical Lie groups. In: Russian Mathematical Surveys, vol. 67, no. 1, pp. 1–92 (2012). arXiv:​0705.​2886G 33.Gerasimov, A., Lebedev, D., Oblezin, S.: Parabolic Whittaker functions and topological field theories I. Commun. Number Theory Phys. 5(1), 135–201 (2011). arXiv:​1002.​2622G 34.Ginzburg, V.: Perverse sheaves on a loop group and Langlands duality (1995). arXiv:​alg-geom/​9511007 35.Givental, A.: Homological geometry and mirror symmetry. Proc. ICM-94, Zürich, pp. 374–387 (1994)36.Givental, A., Kim, B.: Quantum cohomology of flag manifolds and Toda lattices. Commun. Math. Phys. 168(3), 609–641 (1995)MATHMathSciNetCrossRef37.Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. In: Topics in singularity theory. American Mathematical Society translations, vol. 180, pp. 103–115. American Mathematical Society, Providence, RI (1997). arXiv:​alg-geom/​9612001 38.Givental, A., Lee, Y.-P.: Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups . Invent. Math. 151(1), 193–219 (2003). arXiv:​math/​0108105 39.Goncharov, A.B., Shen, L.: Geometry of canonical bases and mirror symmetry (2013). arXiv:​1309.​5922 40.Gross, M., Hacking P., Keel S.: Mirror symmetry for log Calabi–Yau surfaces I (2013). arXiv:​1106.​4977 41.Gross, M., Hacking P., Keel S.: Birational geometry of cluster algebras (2013). arXiv:​1309.​2573 42.Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands program . In: Current developments in mathematics, pp. 35–180. Int. Press, Somerville, MA (2008). arXiv:​hep-th/​0612073 43.Hori, K., Vafa, C.: Mirror symmetry (2003). arXiv:​hep-th/​0002222 44.Joseph, A.: Quantum Groups and Their Primitive Ideals. Springer, Berlin (1995)MATHCrossRef45.Kamnitzer, J.: Mirkovich–Vilonen cycles and polytopes. Ann. Math. 171(1), 245–294 (2010). arXiv:​math/​0501365 46.Kamnitzer, J.: Hives and the fibres of the convolution morphism. Selecta Math. (N.S.) 13(3), 483–496 (2007). arXiv:​0705.​1698 47.Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69(2), 455–485 (1993)MATHMathSciNetCrossRef48.Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007). arXiv:​hep-th/​0604151 49.Kontsevich, M.: Symplectic geometry of homological algebra. Arbeitstagung (2007)50.Kontsevich, M.: Symplectic geometry of homological algebra. A talk at Arbeitstagung, Bonn. http://​www.​ihes.​fr/​~maxim/​publicationsangl​ais.​html (2009)51.Kontsevich, M.: Talk at the Gelfand 100 conference at MIT (2013)52.Kontsevich, M., Soibelman, Y.: Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry (2013). arXiv:​1303.​3253 53.Kostant, B.: Quantization and representation theory. Representation theory of Lie Groups. London Math. Soc. Lecture Notes, vol. 34, pp. 287–316 (1977)54.Knutson, A., Tao, T.: The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture (1998). arXiv:​math/​9807160 55.Knutson, A., Tao, T., Woodward, Ch.: A positive proof of the Littlewood–Richardson rule using the octahedron recurrence. Electron. J. Combin. 11 (2004). arXiv:​math/​0306274 56.Lam, Th.: Whittaker functions, geometric crystals, and quantum Schubert calculus (2013). arXiv:​1308.​5451 57.Le, I.: Higher laminations and affine buildings (2013). arXiv:​1209.​0812 58.Lusztig, G.: Total posistivity in reductive groups. Lie Theory and Geometry. In Honor of B. Kostant, Progr. in Math., vol. 123, pp. 531–568. Birkhauser, Basel (1994)59.Lusztig, G.: Canonical basis arising from quantum canonical algebras. JAMS 3(2), 447–498 (1990)MATHMathSciNet60.Lusztig, G.: An algebraic geometric parametrisation of the canonical basis. Adv. Math. 120, 172–190 (1996)MathSciNetCrossRef61.Lusztig, G.: Canonical bases in tensor products. Proc. Natl. Acad. Sci. USA 89(17), 8177–8179 (1992)MATHMathSciNetCrossRef62.Lusztig, G.: Singularities, character formulas and a q-analog of weight multipicities. Astérisque 101–102, 208–229 (1983)MathSciNet63.Malkin, A.: Tensor product varieties and crystals: the ADE case. Duke Math. J. 116(3), 477–524 (2003). arXiv:​0103025 64.Marsh, R., Rietsch K.: The B-model connection and mirror symmetry for Grassmannians (2013). arXiv:​1307.​1085 65.Mirkovic, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2) 166(1), 95–143 (2007)MATHMathSciNetCrossRef66.Nakajima, H.: Quiver varieties and tensor products. Invent. Math. 146(2), 399–449 (2001). arXiv:​math.​QA/​0103008 67.Nakajima, H.: Geometric construction of representations of affine algebras. In: Proceedings of the International Congress of Mathematicians, Beijing, vol. I, 423438. Higher Ed. Press, Beijing (2002). arXiv:​math/​0212401 68.Retakh, V., Zelevinsky, A.: The fundamental affine space and canonical basis in irreducible representations of the group \(Sp_4\). Doklady AN SSSR 300(1), 31–35 (1988)MathSciNet69.Rietsch, K.: A mirror symmetric construction of \(qH_T(G/P)_{(q)}\). Adv. Math. 217(6), 2401–2442 (2008). arXiv:​math/​0511124 MATHMathSciNetCrossRef70.Rietsch, K.: A mirror symmetric solution to the quantum Toda lattice. Comm. Math. Phys. 309(1), 23–49 (2012). arXiv:​0705.​3202 71.Seidel, P.: Graded Lagrangian submanifolds. Bull. Soc. Math. Fr. 128, 103–149 (2000)MATHMathSciNet72.Seidel, P.: Fukaya categories and Picard–Lefschetz theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zrich (2008)73.Sibilla, N., Treumann, D., Zaslow, E.: Ribbon graphs and mirror symmetry I . Selecta Math. (N.S.) 20(4), 979–1002 (2014). arXiv:​1103.​2462 74.Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003). arXiv:​math.​AG/​0205236 75.Teleman, C.: Gauge theory and mirror symmetry. ICM, Seoul (2014). arXiv:​1404.​6305 76.Witten, E.: Two dimensional gravity and intersection theory on moduli spaces. Surveys Differ. Geom. 1, 243–310 (1991)CrossRef About this Article Title Geometry of canonical bases and mirror symmetry Journal Inventiones mathematicae Volume 202, Issue 2 , pp 487-633 Cover Date2015-11 DOI 10.1007/s00222-014-0568-2 Print ISSN 0020-9910 Online ISSN 1432-1297 Publisher Springer Berlin Heidelberg Additional Links Register for Journal Updates Editorial Board About This Journal Manuscript Submission Topics Mathematics, general Industry Sectors Finance, Business & Banking IT & Software Telecommunications Authors Alexander Goncharov (1) Linhui Shen (1) Author Affiliations 1. Mathematics Department, Yale University, New Haven, CT, 06520, USA Continue reading... To view the rest of this content please follow the download PDF link above.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700