Reassessment of teratogenic risk from antenatal ultrasound
详细信息    查看全文
  • 作者:Emily L. Williams (1112)
    Manuel F. Casanova (2112)
  • 关键词:Cavitation ; Microstreaming ; Sonoporation ; Teratogens ; Ultrasonography ; Prenatal
  • 刊名:Translational Neuroscience
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:4
  • 期:1
  • 页码:81-87
  • 全文大小:470KB
  • 参考文献:1. Connolly C., Pond J., The possibility of harmful effects in using ultrasound for medical diagnosis, Biomed. Eng., 1967, 2, 112-15
    2. Woo J., A short history of the development of ultrasound in obstetrics and gynecology. History of ultrasound in obstetrics and gynecology, Part 1, 2008, retrieved on 10/12/2009 from http://www.ob-ultrasound.net/history1.html
    3. Dewhurst C.J., The safety of ultrasound, Proc. R. Soc. Med., 1971, 64, 996-97
    4. Dognon A., Simonot Y., 1951. Cavitation et hémolyse par ultrasons de fréquences différentes, C. R. Hebd. Séances Acad. Sci., 1951, 232, 2411-413
    5. K?í?ek V., Kolominsky J., Tepelné ú?inky ultrazvuku ve tkán?ch, ?as. Lék. ?es., 1951, 90, 482-86
    6. Johns L.D., Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis, J. Athl. Train., 2002, 37, 293-99
    7. Newnham J.P., Evans S.F., Michael C.A., Stanley F.J., Landau L.I., Effects of frequent ultrasound during pregnancy: a randomised controlled trial, Lancet, 1993, 342, 887-91 CrossRef
    8. Tarantal A.F., Hendrickx A.G., Evaluation of the bioeffects of prenatal ultrasound exposure in the cynomolgus macaque (Macaca fascicularis): I. neonatal/infant observations, Teratology, 1989, 39, 137-47 CrossRef
    9. You J.J., Alter D.A., Stukel T.A., McDonald S.D., Laupacis A., Liu Y., et al., Proliferation of prenatal ultrasonography, Can. Med. Assoc. J., 2010, 182, 143-51 CrossRef
    10. Holland C.K., Apfel R.E., Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment, J. Acoust. Soc. Am., 1990, 88, 2059-069 CrossRef
    11. Frizzell L.A., Biological effects of acoustic cavitation, In: Suslick K.S. (Ed.), Ultrasound: its chemical, physical and biological effects, VCH, New York, 1988, 287-03
    12. Kremkau F.W., Bioeffects and safety, In: Diagnostic ultrasound: principles, instrumentation and exercises, 2nd ed., Grune and Straton, New York, 1984, 166-77
    13. Nyborg W.L., Carson P.L., Miller D.L., Miller M.W., Ziskin M.C., Carstensen E.L., et al., Biological effects of ultrasound: mechanisms and clinical Implications, National Council on Radiation Protection and Measurement, Bethesda, 1983
    14. National Institutes of Health Consensus Committee, Diagnostic ultrasound imaging in pregnancy, 1984, NIH Pub. No. 84-667
    15. Ziskin M.S., Petitti D.B., Epidemiology of human exposure to ultrasound: a critical review, Ultrasound Med. Biol., 1988, 14, 91-6 CrossRef
    16. Grether J.K., Li S.X., Yoshida C.K., Croen L.A., Antenatal ultrasound and risk of autism spectrum disorders, J. Autism Dev. Disord., 2010, 40, 238-45 CrossRef
    17. Tezel A., Sens A., Mitragotri S., Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy, J. Pharm. Sci., 2002, 91, 444-53 CrossRef
    18. Counce S.J., Selman G.G., The effects of ultrasonic treatment on embryonic development of Drosophila melanogaster, J. Embryol. Exp. Morphol., 1955, 3, 121-41
    19. Suslick K.S., The chemical effects of ultrasound., Sci. Am., 1989, 260, 80-6 CrossRef
    20. Basile A., Biziato D., Sherbet G.V., Comi P., Cajone F., Hyperthermia inhibits cell proliferation and induces apoptosis: relative signaling status of P53, S100A4, and Notch in heat sensitive and resistant cell lines, J. Cell. Biochem., 2008, 103, 212-20 CrossRef
    21. Kampinga H.H., Thermotolerance in mammalian cells: protein denaturation and a aggregation, and stress proteins, J. Cell Sci., 1993, 104, 11-7
    22. Yatvin M.B., The influence of membrane lipid composition and procaine on hyperthermic death of cells, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1977, 32, 513-21 CrossRef
    23. Riesz P., Kondo T., Free radical formation induced by ultrasound and its biological implications, Free Radic. Biol. Med., 1992, 13, 247-70 CrossRef
    24. Davies K.J., Protein damage and degradation by oxygen radicals, I. General aspects, J. Biol. Chem., 1987, 262, 9895-901
    25. Quinlan G.J., Gutteridge J.M., Hydroxyl radical generation by the tetracycline antibiotics with free radical damage to DNA, lipids and carbohydrate in the presence of iron and copper salts, Free Radic. Biol. Med., 1988, 5, 341-48 CrossRef
    26. Stadtman E.R., Levine R.L., Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, 2003, 25, 207-18 CrossRef
    27. Macintosh I.J., Davey D.A., Relationship between intensity of ultrasound and induction of chromosome aberrations, Br. J. Radiol., 1972, 45, 320-27 CrossRef
    28. Newcomer E.H., Wallace R.H., Chromosomal and nuclear aberrations induced by ultrasonic vibrations, Am. J. Bot., 1949, 36, 230-36 CrossRef
    29. Krasovitski B., Kimmel E., Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2004, 51, 973-79 CrossRef
    30. Koshiyama K., Yano T., Kodama T., Self-organization of a stable pore structure in a phospholipid bilayer, Phys. Rev. Lett., 2010, 105, 018105 CrossRef
    31. Deng C.X., Sieling F., Pan H., Cui J., Ultrasound-induced cell membrane porosity, Ultrasound Med. Biol., 2004, 30, 519-26 CrossRef
    32. Carafoli E., Calcium signaling: a tale for all seasons, Proc. Natl. Acad. Sci. USA, 2002, 99, 1115-122 CrossRef
    33. Zhou Y., Shi J., Cui J., Deng C.X., Effects of extracellular calcium on cell membrane resealing in sonoporation, J. Control. Release, 2008, 126, 34-3 CrossRef
    34. Reddy A., Caler E.V., Andrews N.W., Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes, Cell, 2001, 106, 157-69 CrossRef
    35. Yang F., Gu N., Chen D., Xi X., Zhang D., Li Y., et al., Experimental study on cell self-sealing during sonoporation, J. Control. Release, 2008, 131, 205-10 CrossRef
    36. Al-Karmi A.M., Dinno M.A., Stolz D.A., Crum L.A., Matthews J.C., Calcium and the effects of ultrasound on frog skin, Ultrasound Med. Biol., 1994, 20, 73-1 CrossRef
    37. Mihran R.T., Barnes F.S., Wachtel H., Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse, Ultrasound Med. Biol., 1990, 16, 297-09 CrossRef
    38. Tufail Y., Yoshihiro A., Pati S., Li M.M., Tyler W.J., Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound, Nat. Protoc., 2011, 6, 1453-470 CrossRef
    39. Pébay A., Peshavariya H., Wong R.C.B., Dusting G.J., Non-classical signalling mechanisms in stem cells, In: Atwood C.S. (Ed.), Embryonic stem cells: the hormonal regulation of pluripotency and embryogenesis, Intech, ijeka, 2011, 317-36
    40. American Institute of Ultrasound in Medicine, AIUM practice guideline for the performance of obstetric ultrasound examinations, J. Ultrasound Med., 2010, 29, 157-66
    41. Sheiner E., Shoham-Vardi I., Abramowicz J.S., What do clinical end users know regarding safety of ultrasound during pregnancy?, J. Ultrasound Med., 2007, 26, 319-25
    42. Washington State Health Care Authority, Ultrasonography (ultrasound) in pregnancy: health technology assessment, 2010, taken on 08/28/2012 from http://www.hta.hca.wa.gov/documents/final_report_ultrasound.pdf
    43. Alberta Clinical Practice Guidelines Working Group for Prenatal Ultrasound, Guideline for the use of prenatal ultrasound: First trimester, Alberta Medical Association, Edmonton, 1998
    44. M?rtensson M., Olsson M., Brodin, L.-?. Ultrasound transducer function: annual testing is not sufficient, Eur. J. Echocardiogr., 2010, 11, 801-05 CrossRef
    45. M?rtensson M., Olsson M., Segall B., Fraser A.G., Winter R., Brodin L.-?. High incidence of defective ultrasound transducers in use in routine clinical practice, Eur. J. Echocardiogr., 2009, 10, 389-94 CrossRef
    46. Rados C., FDA cautions against ultrasound-keepsake-images, FDA Consum., 2004, 38, 12-6
    47. Williams E.L., Casanova M.F., Prenatal ultrasound: it’s not just a photograph, Autism Sci. Dig., 2011, 1, 58-0
    48. Abbott J.G., Rationale and derivation of MI and TI -a review, Ultrasound Med. Biol., 1999, 25, 431-41 CrossRef
  • 作者单位:Emily L. Williams (1112)
    Manuel F. Casanova (2112)

    1112. Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
    2112. Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
文摘
Science has shown that risk of cavitation and hyperthermia following prenatal ultrasound exposure is relatively negligible provided intensity, frequency, duration of exposure, and total numbers of exposures are safely limited. However, noncavitational mechanisms have been poorly studied and occur within what are currently considered “safe-levels of exposure. To date, the teratogenic capacity of noncavitational effectors are largely unknown, although studies have shown that different forms of ultrasound-induced hydraulic forces and pressures can alter membrane fluidity, proliferation, and expression of inflammatory and repair markers. Loose regulations, poor end user training, and unreliable ultrasound equipment may also increase the likelihood of cavitation and hyperthermia during prenatal exposure with prolonged durations and increased intensities. The literature suggests a need for tighter regulations on the use of ultrasound and further studies into its teratogenicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700