Silibinin Prevents Autophagic Cell Death upon Oxidative Stress in Cortical Neurons and Cerebral Ischemia-Reperfusion Injury
详细信息    查看全文
  • 作者:Min Wang ; Yu-Jiao Li ; Yi Ding ; Hui-Nan Zhang ; Ting Sun ; Kun Zhang…
  • 关键词:Silibinin ; Oxidative stress ; Antioxidant ; Neuron ; Autophagy ; Apoptosis ; Survival
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:53
  • 期:2
  • 页码:932-943
  • 全文大小:2,246 KB
  • 参考文献:1.Koike M, Shibata M, Tadakoshi M et al (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172:454–469PubMedCentral CrossRef PubMed
    2.Lim GP, Chu T, Yang F et al (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377PubMed
    3.Janda E, Isidoro C, Carresi C et al (2012) Defective autophagy in Parkinson’s disease: role of oxidative stress. Mol Neurobiol 46:639–661CrossRef PubMed
    4.Brandon-Warner E, Sugg JA, Schrum LW et al (2010) Silibinin inhibits ethanol metabolism and ethanol-dependent cell proliferation in an in vitro model of hepatocellular carcinoma. Cancer Lett 291:120–129PubMedCentral CrossRef PubMed
    5.Yin F, Liu J, Ji X et al (2011) Silibinin: a novel inhibitor of Abeta aggregation. Neurochem Int 58:399–403CrossRef PubMed
    6.Lu P, Mamiya T, Lu LL et al (2009) Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. Br J Pharmacol 157:1270–1277PubMedCentral CrossRef PubMed
    7.Murata N, Murakami K, Ozawa Y et al (2010) Silymarin attenuated the amyloid beta plaque burden and improved behavioral abnormalities in an Alzheimer’s disease mouse model. Biosci Biotechnol Biochem 74:2299–2306CrossRef PubMed
    8.Hu Z, Yang B, Mo X et al. (2014) Mechanism and regulation of autophagy and its role in neuronal diseases. Mol Neurobiol
    9.Sheng R, Liu XQ, Zhang LS et al (2012) Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 8:310–325CrossRef PubMed
    10.Carloni S, Albertini MC, Galluzzi L et al (2014) Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol 255:103–112CrossRef PubMed
    11.Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939CrossRef PubMed
    12.Wu Y, Peng H, Cui M et al (2009) CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. J Neurochem 109:1157–1167PubMedCentral CrossRef PubMed
    13.Yang Q, Yang ZF, Liu SB et al (2010) Neuroprotective effects of hydroxysafflor yellow A against excitotoxic neuronal death partially through down-regulation of NR2B-containing NMDA receptors. Neurochem Res 35:1353–1360CrossRef PubMed
    14.Wang X, Sirianni A, Pei Z et al (2011) The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J Neurosci 31:14496–14507PubMedCentral CrossRef PubMed
    15.Wu YM, Jin R, Yang L et al (2013) Phosphatidylinositol 3 kinase/protein kinase B is responsible for the protection of paeoniflorin upon H(2)O(2)-induced neural progenitor cell injury. Neuroscience 240:54–62CrossRef PubMed
    16.Li YJ, Yang Q, Zhang K et al (2013) Cytisine confers neuronal protection against excitotoxic injury by down-regulating GluN2B-containing NMDA receptors. Neurotoxicology 34:219–225CrossRef PubMed
    17.Wang X, Figueroa BE, Stavrovskaya IG et al (2009) Friedlander RM: methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke 40:1877–1885PubMedCentral CrossRef PubMed
    18.Wen YD, Sheng R, Zhang LS et al (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769CrossRef PubMed
    19.St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408CrossRef PubMed
    20.Kim J, Wong PK (2009) Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cells 27:1987–1998CrossRef PubMed
    21.Kirkland RA, Franklin JL (2007) Bax affects production of reactive oxygen by the mitochondria of non-apoptotic neurons. Exp Neurol 204:458–461PubMedCentral CrossRef PubMed
    22.Zhang S, Ye J, Dong G (2010) Neuroprotective effect of baicalein on hydrogen peroxide-mediated oxidative stress and mitochondrial dysfunction in PC12 cells. J Mol Neurosci 40:311–320CrossRef PubMed
    23.Maheshwari A, Misro MM, Aggarwal A et al (2011) N-acetyl-L-cysteine counteracts oxidative stress and prevents H2O2 induced germ cell apoptosis through down-regulation of caspase-9 and JNK/c-Jun. Mol Reprod Dev 78:69–79CrossRef PubMed
    24.Lee SH, Heo JS, Lee MY et al (2008) Effect of dihydrotestosterone on hydrogen peroxide-induced apoptosis of mouse embryonic stem cells. J Cell Physiol 216:269–275CrossRef PubMed
    25.Zhao H, Sapolsky RM, Steinberg GK (2006) Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34:249–270CrossRef PubMed
    26.Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29:233–242CrossRef PubMed
    27.Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348PubMedCentral CrossRef PubMed
    28.Tan CC, Yu JT, Tan MS et al (2014) Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 35:941–957CrossRef PubMed
    29.Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316CrossRef PubMed
    30.Levine B (2007) Cell biology: autophagy and cancer. Nature 446:745–747CrossRef PubMed
    31.Li Y, Li S, Qin X et al (2014) The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 5:e1245PubMedCentral CrossRef PubMed
    32.Guerra-Araiza C, Alvarez-Mejia AL, Sanchez-Torres S et al (2013) Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic Res 47:451–462CrossRef PubMed
    33.Schroeter H, Boyd C, Spencer JP et al (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 23:861–880CrossRef PubMed
    34.Spencer B, Potkar R, Trejo M et al (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588PubMedCentral CrossRef PubMed
    35.Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35PubMedCentral CrossRef PubMed
    36.Antonsson B (2004) Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem 256–257:141–155
    37.Itoh N, Tsujimoto Y, Nagata S et al (1993) Effect of bcl-2 on Fas antigen-mediated cell death. J Immunol 151:621–627PubMed
    38.Bruce-Keller AJ, Begley JG, Fu W et al (1998) Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid beta-peptide. J Neurochem 70:31–39CrossRef PubMed
  • 作者单位:Min Wang (1)
    Yu-Jiao Li (1)
    Yi Ding (2)
    Hui-Nan Zhang (1)
    Ting Sun (1)
    Kun Zhang (1)
    Le Yang (1)
    Yan-Yan Guo (1)
    Shui-Bing Liu (1)
    Ming-Gao Zhao (1)
    Yu-Mei Wu (1)

    1. Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, People’s Republic of China
    2. Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, People’s Republic of China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Neuronal apoptosis and oxidative stress are involved in most of the neurodegenerative diseases, promoting neuron survival is critical for therapy. Silibinin (SLB), which is derived from the seeds of Silybinisus laborinum L., has been widely used as an antioxidant. Here we tested the neuroprotective effects of SLB and the involved molecular mechanisms. We demonstrated that SLB promoted neuron viability upon hydrogen peroxide (H2O2) challenge and reduced hypoxia/ischemia injury in the middle cerebral artery occlusion (MCAO) mouse model. SLB reversed the decreased level of procaspase-3 and balanced Bcl-2 and Bax expression upon H2O2 insult to inhibit cell apoptosis. Furthermore, SLB suppressed the activation of autophagy by decreasing microtubule-associated protein 1 light chain 3 (LC3-II) and Beclin-1 levels under oxidative stress accordingly. SLB phosphorylated protein kinase B (Akt-1) at Ser473 in a time- and dose-dependent manner. The inhibitor for phosphoinositide-3-kinase (PI3K) wortmannin abrogated SLB-induced phosphorylation of Akt-1 and mTOR, decreased the suppression of autophagy, and therefore abolished SLB-mediated neuroprotection. All the data suggested that SLB protected neurons by inhibiting both the mitochondrial and autophagic cell death pathways. This study opens new avenues for the use of SLB in treatment of central nervous system (CNS) diseases in which oxidative stress plays a major role in disease pathogenesis. Given that it occurs naturally with low toxicity and pleiotropic effects that benefit the nervous system, SLB acts potentially as a novel therapy for ischemic injury. Keywords Silibinin Oxidative stress Antioxidant Neuron Autophagy Apoptosis Survival

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700