Improvement of Sensitivity and Limit of Detection in a Nanogap Biosensor by Controlling Surface Wettability
详细信息    查看全文
  • 作者:Chang-Hoon Kim (1)
    Jae-Hyuk Ahn (1)
    Jee-Yeon Kim (1)
    Ji-Min Choi (1)
    Tae Jung Park (2)
    Yang-Kyu Choi (1)
  • 关键词:Hydrophobic passivation ; Wettability ; Sensitivity ; Limit of Detection ; LOD ; Cardiac troponin I ; cTnI
  • 刊名:BioNanoScience
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:3
  • 期:2
  • 页码:192-197
  • 全文大小:403KB
  • 参考文献:1. Ishikawa, F. N., Chang, H.-K., Curreli, M., et al. (2009). Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. / ACS Nano, 3, 1219鈥?224. CrossRef
    2. Zhang, G.-J., Chua, J. H., Chee, R.-E., Agarwal, A., Wong, S. M. (2009). Label-free direct detection of MiRNAs with silicon nanowire biosensors. / Biosensors and Bioelectronics, 24, 2504鈥?508. CrossRef
    3. Nair, P. R., & Alam, M. A. (2007). Design considerations of silicon nanowire biosensors. / IEEE Transfer Electron Devices, 54, 3400鈥?408. CrossRef
    4. Elfstrom, N., Karlstrom, A. E., Linnros, J. (2008). Silicon nanoribbons for electrical detection of biomolecules. / Nano Letters, 8, 945鈥?49. CrossRef
    5. Kim, A., Ah, C. S., Yu, H. Y., et al. (2007). Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. / Applied Physics Letters, 91, 103901. CrossRef
    6. Grant, S. A., Xu, J., Bergeron, E. J., Mroz, J. (2001). Development of dual receptor biosensors: an analysis of FRET pairs. / Biosensors and Bioelectronics, 16, 231鈥?37. CrossRef
    7. Ko, S., Kim, B., Jo, S.-S., Oh, S. Y., Park, J.-K. (2007). Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel. / Biosensors and Bioelectronics, 23, 51鈥?9. CrossRef
    8. Ko, S., Park, T. J., Kim, H.-S., Kim, J.-H., Cho, Y.-J. (2009). Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticles-based SPR immunosensors. / Biosensors and Bioelectronics, 24, 2592鈥?597. CrossRef
    9. Guo, S., Wen, D., Zhai, Y., Dong, S., Wang, E. (2010). Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. / ACS Nano, 4, 3959鈥?968. CrossRef
    10. Hou, S., Kasner, M. L., Su, S., Patel, K., Cuellari, R. (2010). Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. / Journal of Physical Chemistry C, 114, 14915鈥?4921. CrossRef
    11. Minton, A. P. (1999). Adsorption of globular proteins on locally planar surfaces. II. Models for the effect of multiple adsorbate conformations on adsorption equilibria and kinetics. / Biophysical Journal, 76, 176鈥?87. CrossRef
    12. Stenberg, E., Persson, B., Roos, H., Urbaniczky, C. (1991). Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. / Journal of Colloid and Interface Science, 143, 513鈥?26. CrossRef
    13. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. / Journal of American Chemical Society, 56, 658鈥?66. CrossRef
    14. Cui, Y., Wei, Q., Park, H., Lieber, C. M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. / Science, 293, 1289鈥?292. CrossRef
    15. Kim, J.-Y., Choi, K., Moon, D.-I., et al. (2013). Surface engineering for enhancement of sensitivity in an underlap-FET biosensor by control of wettability. / Biosensors and Bioelectronics, 41, 867鈥?70. CrossRef
    16. Im, H., Huang, X.-J., Gu, B., Choi, Y.-K. (2007). A dielectric-modulated field-effect transistor for biosensing. / Nature Nanotechnology, 2, 430鈥?34. CrossRef
    17. Kim, S., Ahn, J.-H., Park, T. J., Lee, S. Y., Choi, Y.-K. (2009). A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor. / Applied Physics Letters, 94, 243903. CrossRef
    18. Gu, B., Park, T. J., Ahn, J.-H., Huang, X.-J., Lee, S. Y., Choi, Y.-K. (2009). Nanogap field-effect transistor biosensors for electrical detection of avian influenza. / Small, 5, 2407鈥?412. CrossRef
    19. Kim, C. H., Jung, C., Lee, K. B., Park, H. G., Choi, Y. K. (2011). Label-free DNA detection with a nanogap embedded complementary metal oxide semiconductor. / Nanotechnology, 22, 135502. CrossRef
    20. Kim, J. Y., Ahn, J. H., Choi, S. J., et al. (2012). An underlap channel-embedded field-effect transistor for biosensor application in watery and dry environment. / IEEE Transactions Nanotechnology, 11, 390鈥?94. CrossRef
    21. Kim, C. H., Jung, C., Park, H. G., Choi, Y. K. (2008). Novel dielectric-modulated field-effect transistor for label-free DNA detection. / BioChip Journal, 2, 127鈥?34.
    22. Choi, D. H., Lee, S. K., Oh, Y. K., et al. (2010). A dual gold nanoparticles conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. / Biosensors and Bioelectronics, 25, 1999鈥?002. CrossRef
  • 作者单位:Chang-Hoon Kim (1)
    Jae-Hyuk Ahn (1)
    Jee-Yeon Kim (1)
    Ji-Min Choi (1)
    Tae Jung Park (2)
    Yang-Kyu Choi (1)

    1. Department of Electrical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
    2. Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 156-756, Republic of Korea
  • ISSN:2191-1649
文摘
Controlling the surface wettability of a biosensor improves the sensitivity and limit of detection (LOD) in an electrical label-free detection. The sensing area is treated as hydrophilic and its outer surface is treated as hydrophobic by using a passivation layer composed of CYTOPTM. The hydrophilic sensing area enhances biomolecule interactions between receptors and analytes, whereas the hydrophobic outer sensing region suppresses them. Consequently, the sensitivity and LOD are improved by the increased analyte concentration during the biomolecule interactions. We varied the areal ratio of the hydrophobic region to the hydrophilic region and investigated its effect via detection of cardiac troponin I, which is a biomarker that is used in determining the prognosis of myocardial infarctions. Threefold of sensitivity and 3 orders of LOD in the hydrophobic passivation were improved over the non-passivation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700