Gene expression changes in Arabidopsis seedlings during short- to long-term exposure to 3-D clinorotation
详细信息    查看全文
  • 作者:Hyuncheol Soh (1)
    Chungkyun Auh (2)
    Woong-Young Soh (3)
    Kyeongsik Han (4)
    Donggiun Kim (5)
    Sukchan Lee (1)
    Yong Rhee (6)
  • 关键词:Arabidopsis ; Gene expression ; Microarray ; Simulated microgravity ; 3 ; D Clinorotation
  • 刊名:Planta
  • 出版年:2011
  • 出版时间:August 2011
  • 年:2011
  • 卷:234
  • 期:2
  • 页码:255-270
  • 全文大小:616KB
  • 参考文献:1. Anthony RG, Henriques R, Helfer A, Meszaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Bogre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572鈥?81 CrossRef
    2. Babbick M, Dijkstra C, Larkin OJ, Anthony P, Davey MR, Power JB, Lowe KC, Cogoli-Greuter M, Hampp R (2007) Expression of transcription factors after short-term exposure of / Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation). Adv Space Res 39:1182鈥?189 CrossRef
    3. Barjaktarovic Z, Nordheim A, Lamkemeyer T, Fladerer C, Madlung J, Hampp R (2007) Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J Exp Bot 58:4357鈥?363 CrossRef
    4. Barlow PW (1998) Gravity and developmental plasticity. Adv Space Res 21:1097鈥?102 CrossRef
    5. Berger S, Mitchell-Olds T, Stotz HU (2002) Local and differential control of vegetative storage protein expression in response to herbivore damage in / Arabidopsis thaliana. Physiol Plant 114:85鈥?1 CrossRef
    6. Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms鈥攇etting genomics going. Curr Opin Plant Biol 9:180鈥?88 CrossRef
    7. Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241鈥?46 CrossRef
    8. Bucher M, Brunner S, Zimmermann P, Zardi GI, Amrhein N, Willmitzer L, Riesmeier JW (2002) The expression of an extensin-like protein correlates with cellular tip growth in tomato. Plant Physiol 128:911鈥?23 CrossRef
    9. Centis-Aubay S, Gasset G, Mazars C, Ranjeva R, Graziana A (2003) Changes in gravitational forces induce modifications of gene expression in / A. thaliana seedlings. Planta 218:179鈥?85 CrossRef
    10. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497鈥?00 CrossRef
    11. Claisse G, Charrier B, Kreis M (2007) The / Arabidopsis thaliana GSK3/Shaggy like kinase AtSK3-2 modulates floral cell expansion. Plant Mol Biol 64:113鈥?24 CrossRef
    12. Debono A, Yeats TH, Rose JK, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21:1230鈥?238 CrossRef
    13. Ehlting J, Sauveplane V, Olry A, Ginglinger JF, Provart NJ, Werck-Reichhart D (2008) An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in / Arabidopsis thaliana. BMC Plant Biol 8:47 CrossRef
    14. Finkelstein R, Gampala SS, Lynch TJ, Thomas TL, Rock CD (2005) Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol Biol 59:253鈥?67 CrossRef
    15. Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189鈥?01 CrossRef
    16. Fujii H, Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA 106:8380鈥?385 CrossRef
    17. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393鈥?04 CrossRef
    18. Han W, Rong H, Zhang H, Wang MH (2009) Abscisic acid is a negative regulator of root gravitropism in / Arabidopsis thaliana. Biochem Biophys Res Commun 378:695鈥?00 CrossRef
    19. Hilaire E, Paulsen AQ, Brown CS, Guikema JA (1995) Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells. Plant Cell Physiol 36:831鈥?37
    20. Hoson T (1994) Automorphogenesis of maize roots under simulated microgravity conditions. Plant Soil 165:309鈥?14 CrossRef
    21. Hoson T, Kamisaka S, Buchen B, Sievers A, Yamashita M, Masuda Y (1996) Possible use of a 3-D clinostat to analyze plant growth processes under microgravity conditions. Adv Space Res 17:47鈥?3 CrossRef
    22. Hoson T, Kamisaka S, Masuda Y, Yamashita M, Buchen B (1997) Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203:S187鈥揝197 CrossRef
    23. Ishii Y, Hoson T, Kamisaka S, Miyamoto K, Ueda J, Mantani S, Fujii S, Masuda Y, Yamamoto R (1996) Plant growth processes in Arabidopsis under microgravity conditions simulated by a clinostat. Biol Sci Space 10:3鈥? CrossRef
    24. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179鈥?88 CrossRef
    25. Kimbrough JM, Salinas-Mondragon R, Boss WF, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136:2790鈥?805 CrossRef
    26. Kittang AI, van Loon JJ, Vorst O, Hall RD, Fossum K, Iversen TH (2004) Ground based studies of gene expression in Arabidopsis exposed to gravity stresses. J Gravit Physiol 11:P223鈥揚224
    27. Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K (1998) ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim Biophys Acta 1370:187鈥?91 CrossRef
    28. Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262鈥?67 CrossRef
    29. La Camera S, Balague C, Gobel C, Geoffroy P, Legrand M, Feussner I, Roby D, Heitz T (2009) The Arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol Plant Microbe Interact 22:469鈥?81 CrossRef
    30. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31鈥?6 CrossRef
    31. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4鈥?4
    32. Martzivanou M, Hampp R (2003) Hyper-gravity effects on the Arabidopsis transcriptome. Physiol Plant 118:221鈥?31 CrossRef
    33. Martzivanou M, Babbick M, Cogoli-Greuter M, Hampp R (2006) Microgravity-related changes in gene expression after short-term exposure of / Arabidopsis thaliana cell cultures. Protoplasma 229:155鈥?62 CrossRef
    34. Merkys A, Laurinavicius R (1991) Development of higher plants under altered gravitational conditions. Adv Space Biol Med 1:155鈥?81 CrossRef
    35. Nagai S, Koide M, Takahashi S, Kikuta A, Aono M, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T (2007) Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in Arabidopsis. Plant Physiol 144:1039鈥?051 CrossRef
    36. Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in / Arabidopsis thaliana. Plant Cell 17:3282鈥?300 CrossRef
    37. Paul AL, Popp MP, Gurley WB, Guy C, Norwood KL, Ferl RJ (2005) Arabidopsis gene expression patterns are altered during spaceflight. Space Life Sciences: Gravity-Related Effects on Plants and Spaceflight and Man-Made Environments on Biological Systems 36:1175鈥?181
    38. Salmi ML, Roux SJ (2008) Gene expression changes induced by space flight in single-cells of the fern / Ceratopteris richardii. Planta 229:151鈥?59 CrossRef
    39. Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430鈥?36 CrossRef
    40. Staswick PE (1994) Storage proteins of vegetative plant tissues. Annu Rev Plant Physiol Plant Mol Biol 45:303鈥?22 CrossRef
    41. Stutte GW, Monje O, Hatfield RD, Paul AL, Ferl RJ, Simone CG (2006) Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta 224:1038鈥?049 CrossRef
    42. Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533鈥?43 CrossRef
    43. Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135鈥?38 CrossRef
    44. Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865鈥?868 CrossRef
    45. Walley JW, Coughlan S, Hudson ME, Covington MF, Kaspi R, Banu G, Harmer SL, Dehesh K (2007) Mechanical stress induces biotic and abiotic stress responses via a novel / cis-element. PLoS Genet 3:1800鈥?812 CrossRef
    46. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244鈥?52 CrossRef
    47. Wang H, Zheng HQ, Sha W, Zeng R, Xia QC (2006) A proteomic approach to analysing responses of / Arabidopsis thaliana callus cells to clinostat rotation. J Exp Bot 57:827鈥?35 CrossRef
    48. Wiborg J, O鈥橲hea C, Skriver K (2008) Biochemical function of typical and variant / Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochem J 413:447鈥?57 CrossRef
    49. Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310鈥?326 CrossRef
    50. Yamashita M, Yamashita A, Yamada M (1997) Three dimensional (3D-) clinostat and its operational characteristics. Biol Sci Space 11:112鈥?18 CrossRef
    51. Zegzouti H, Anthony RG, Jahchan N, Bogre L, Christensen SK (2006) Phosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) in Arabidopsis. Proc Natl Acad Sci USA 103:6404鈥?409 CrossRef
    52. Zhou X, Su Z (2007) EasyGO: gene ontology-based annotation and functional enrichment analysis tool for agronomical species. BMC Genomics 8:1鈥? CrossRef
  • 作者单位:Hyuncheol Soh (1)
    Chungkyun Auh (2)
    Woong-Young Soh (3)
    Kyeongsik Han (4)
    Donggiun Kim (5)
    Sukchan Lee (1)
    Yong Rhee (6)

    1. Department of Genetic Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
    2. Division of Life Sciences, Mokpo National University, Muan, 534-729, Korea
    3. Department of Biological Science, Chonbuk National University, Jeonju, 561-756, Korea
    4. Department of Beauty and Cosmetics, College of Health and Welfare, Woosuk University, Samnye, Chonbuk, 565-701, Korea
    5. Department of Biological Sciences, Silla University, Busan, 617-736, Korea
    6. The Institute of Life Science and Technology, Sungkyunkwan University, Suwon, 440-746, Korea
文摘
Seedlings of Arabidopsis thaliana (cv. Columbia) were used to evaluate dynamic transcriptional-level genome responses to simulated microgravity condition created by 3-D clinorotation. The DNA chip data analysis showed that the plant may respond to simulated microgravity by dynamic induction (up- and down-regulations) of the responsive genes in the genome. The qRT-PCR results on the investigated genes showed that the expression patterns of the genes (molecular response) were generally similar to the physiological response patterns detected in stress-challenged plants. Expression patterns were categorized into short or continual up- or down-regulated patterns, as well as stochastic changes from short- to long-term simulated microgravity stress. The induced genes are then assumed to establish a new molecular plasticity to the newly adjusted genome status in the basic milieu of maintaining homeostasis during the process of adaptation to simulated microgravity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700