Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural
详细信息    查看全文
  • 作者:Hyung-Min Seo ; Jong-Min Jeon ; Ju Hee Lee…
  • 关键词:Escherichia coli ; Isobutanol ; Furfural ; Aldehyde oxidoreductase
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:43
  • 期:1
  • 页码:37-44
  • 全文大小:795 KB
  • 参考文献:1.Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. doi:10.​1038/​nature06450 PubMed CrossRef
    2.Atsumi S, Li Z, Liao JC (2009) Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 75:6306–6311. doi:10.​1128/​AEM.​01160-09 PubMed PubMedCentral CrossRef
    3.Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657. doi:10.​1007/​s00253-009-2085-6 PubMed PubMedCentral CrossRef
    4.Baek JM, Mazumdar S, Lee SW, Jung MY, Lim JH, Seo SW, Jung GY, Oh MK (2013) Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol Bioeng 110:2790–2794. doi:10.​1002/​bit.​24925 PubMed CrossRef
    5.Barciszewski J, Siboska GE, Pedersen BO, Clark BF, Rattan SI (1997) A mechanism for the in vivo formation of N6-furfuryladenine, kinetin, as a secondary oxidative damage product of DNA. FEBS Lett 414:457–460PubMed CrossRef
    6.Boronat A, Aguilar J (1979) Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties, and comparison with the fucose-induced enzyme. J Bacteriol 140:320–326PubMed PubMedCentral
    7.Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182. doi:10.​1146/​annurev.​arplant.​043008.​092125 PubMed CrossRef
    8.Gonzalez-Benito G, Rodriguez-Brana L, Bolado S, Coca M, Garcia-Cubero MT (2009) Batch ethanol fermentation of lignocellulosic hydrolysates by Pichia stipitis. Effect of acetic acid, furfural and HMF. New Biotechnol 25:S261CrossRef
    9.Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339–349. doi:10.​1007/​s00253-005-0142-3 PubMed CrossRef
    10.Gutierrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1—an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164. doi:10.​1016/​j.​jbiotec.​2005.​07.​003 PubMed CrossRef
    11.Horvath IS, Taherzadeh MJ, Niklasson C, Liden G (2001) Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol Bioeng 75:540–549PubMed CrossRef
    12.Jarboe LR (2011) YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol 89:249–257. doi:10.​1007/​s00253-010-2912-9 PubMed CrossRef
    13.Jarboe LR, Liu P, Kautharapu KB, Ingram LO (2012) Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals. Comput Struct Biotechnol J 3:e201210005. doi:10.​5936/​csbj.​201210005 PubMed PubMedCentral CrossRef
    14.Khan QA, Shamsi FA, Hadi SM (1995) Mutagenicity of furfural in plasmid DNA. Cancer Lett 89:95–99PubMed CrossRef
    15.Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.​1021/​Ie801542g CrossRef
    16.Liu X, Bastian S, Snow CD, Brustad EM, Saleski TE, Xu JH, Meinhold P, Arnold FH (2012) Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol. J Biotechnol 164:188–195. doi:10.​1016/​j.​jbiotec.​2012.​08.​008 PubMed PubMedCentral CrossRef
    17.Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Nunn D, Shanmugam KT, Ingram LO (2009) Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 75:6132–6141. doi:10.​1128/​AEM.​01187-09 PubMed PubMedCentral CrossRef
    18.Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75:4315–4323. doi:10.​1128/​AEM.​00567-09 PubMed PubMedCentral CrossRef
    19.Miller EN, Turner PC, Jarboe LR, Ingram LO (2010) Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol Lett 32:661–667. doi:10.​1007/​s10529-010-0209-9 PubMed PubMedCentral CrossRef
    20.Obradors N, Cabiscol E, Aguilar J, Ros J (1998) Site-directed mutagenesis studies of the metal-binding center of the iron-dependent propanediol oxidoreductase from Escherichia coli. Eur J Biochem 258:207–213PubMed CrossRef
    21.Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24CrossRef
    22.Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRef
    23.Phylactides M (1997) Molecular biology series 3. Tools of molecular biology: gene cloning. Br J Hosp Med 57:49–50PubMed
    24.Rodriguez GM, Atsumi S (2014) Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 25:227–237. doi:10.​1016/​j.​ymben.​2014.​07.​012 PubMed PubMedCentral CrossRef
    25.Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845. doi:10.​1038/​nature07190 PubMed CrossRef
    26.Sarvari Horvath I, Franzen CJ, Taherzadeh MJ, Niklasson C, Liden G (2003) Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol 69:4076–4086PubMed PubMedCentral CrossRef
    27.Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619. doi:10.​1074/​jbc.​M311657200 PubMed CrossRef
    28.Service RF (2007) Cellulosic ethanol. Biofuel researchers prepare to reap a new harvest. Science 315:1488–1491. doi:10.​1126/​science.​315.​5818.​1488 PubMed CrossRef
    29.Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMed CrossRef
    30.van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RG, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107. doi:10.​3389/​fpls.​2013.​00107 PubMed PubMedCentral
    31.Wang X, Miller EN, Yomano LP, Zhang X, Shanmugam KT, Ingram LO (2011) Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microbiol 77:5132–5140. doi:10.​1128/​AEM.​05008-11 PubMed PubMedCentral CrossRef
    32.Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmugam KT, Ingram LO (2013) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci USA 110:4021–4026. doi:10.​1073/​pnas.​1217958110 PubMed PubMedCentral CrossRef
    33.Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33PubMed CrossRef
    34.Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530PubMed CrossRef
  • 作者单位:Hyung-Min Seo (1)
    Jong-Min Jeon (1)
    Ju Hee Lee (1)
    Hun-Suk Song (1)
    Han-Byul Joo (1)
    Sung-Hee Park (2)
    Kwon-Young Choi (3)
    Yong Hyun Kim (4)
    Kyungmoon Park (5)
    Jungoh Ahn (4)
    Hongweon Lee (4)
    Yung-Hun Yang (1) (6)

    1. Department of Microbial Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
    2. Food Ingredients Center, Foods R&D, CheilJedang, Guro-dong, Guro-gu, Seoul, 152-051, Republic of Korea
    3. Department of Environmental Engineering, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 443-749, Republic of Korea
    4. Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Gwahangno, Yuseong-gu, Taejon, 305-806, Republic of Korea
    5. Department of Biological and Chemical Engineering, Hongik University, Sejong-ro 2639, Jochiwon, Sejong City, Republic of Korea
    6. Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul, 143-701, Republic of Korea
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
Furfural is a toxic by-product formulated from pretreatment processes of lignocellulosic biomass. In order to utilize the lignocellulosic biomass on isobutanol production, inhibitory effect of the furfural on isobutanol production was investigated and combinatorial application of two oxidoreductases, FucO and YqhD, was suggested as an alternative strategy. Furfural decreased cell growth and isobutanol production when only YqhD or FucO was employed as an isobutyraldehyde oxidoreductase. However, combinatorial overexpression of FucO and YqhD could overcome the inhibitory effect of furfural giving higher isobutanol production by 110 % compared with overexpression of YqhD. The combinatorial oxidoreductases increased furfural detoxification rate 2.1-fold and also accelerated glucose consumption 1.4-fold. When it compares to another known system increasing furfural tolerance, membrane-bound transhydrogenase (pntAB), the combinatorial aldehyde oxidoreductases were better on cell growth and production. Thus, to control oxidoreductases is important to produce isobutanol using furfural-containing biomass and the combinatorial overexpression of FucO and YqhD can be an alternative strategy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700