Contributions of ε and α′ TRIP Effects to the Strength and Ductility of AISI 304 (X5CrNi18-10) Austenitic Stainless Steel
详细信息    查看全文
  • 作者:Andreas Weiß ; Heiner Gutte ; Javad Mola
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:47
  • 期:1
  • 页码:112-122
  • 全文大小:640 KB
  • 参考文献:1.G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897–1904.
    2.G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1905–14.
    3.S. Cotes, M. Sade, and A. Fernandez Guillermet: Metall. Mater. Trans. A, 1995, vol. 26, pp. 1957–69.CrossRef
    4.S.M. Cotes, A. Fernández Guillermet, and M. Sade: Metall. Mater. Trans. A, 2004, vol. 35, pp. 83–91.CrossRef
    5.H. Gutte and A. Weiß: Habilitation, TU Bergakademie Freiberg, Freiberg, 2011.
    6.A.P. Miodownik: Calphad, 1978, vol. 2, pp. 207–26.CrossRef
    7.H. Schumann: Arch Eisenhuettenw, 1969, vol. 40, pp. 1027–37.
    8.H.J. Eckstein and A. Weiß: Neue Hütte, 1992, vol. 37, pp. 438–44.
    9.Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–22.CrossRef
    10.J.F. Breedis and L. Kaufman: Metall. Trans., 1971, vol. 2, pp. 2359–71.CrossRef
    11.F. Lecroisey and A. Pineau: Metall. Trans., 1972, vol. 3, pp. 391–400.CrossRef
    12.G. Blanc, R. Tricot, and R. Castro: Mem Sci Rev Met., 1973, vol. 70, pp. 527–41.
    13.I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–53.CrossRef
    14.J.R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38.CrossRef
    15.A. Kovalev, M. Wendler, A. Jahn, A. Weiß, and H. Biermann: Adv. Eng. Mater., 2013, vol. 15, pp. 609–17.CrossRef
    16.D. Fahr: Metall. Trans., 1971, vol. 2, pp. 1883–92.
    17.N. Tsuchida, Y. Morimoto, T. Tonan, Y. Shibata, K. Fukaura, and R. Ueji: ISIJ Int., 2011, vol. 51, pp. 124–29.CrossRef
    18.J. Talonen: Helsinki University of Technology, 2007.
    19.W. Bleck: Int. Conf. TRIP-Aided High Strength Ferr. Alloys, Ghent, 2002, pp. 13–24.
    20.O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.CrossRef
    21.A.S. Hamada, L.P. Karjalainen, R.D.K. Misra, and J. Talonen: Mater. Sci. Eng. A, 2013, vol. 559, pp. 336–44.CrossRef
    22.A. Weiß, P.R. Scheller, and Gutte: Steel Grips, 2003, vol. 1, pp. 284–88.
    23.A. Weiß, H. Gutte, and P.R. Scheller: Steel Res. Int., 2006, vol. 77, pp. 727–32.
    24.R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6, pp. 1345–51.CrossRef
    25.C.G. Rhodes and A.W. Thompson: Metall. Trans. A, 1977, vol. 8, pp. 1901–6.CrossRef
    26.T.S. Byun: Acta Mater., 2003, vol. 51, pp. 3063–71.CrossRef
    27.M. Okayasu, H. Fukui, H. Ohfuji, and T. Shiraishi: Mater. Sci. Technol., 2013, vol. 30, pp. 301–8.CrossRef
    28.J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.CrossRef
    29.S. Martin: TU Bergakademie Freiberg, Freiberg, 2013.
    30.M. Wendler, A. Weiß, L. Krüger, J. Mola, A. Franke, A. Kovalev, and S. Wolf: Adv. Eng. Mater., 2013, vol. 15, pp. 558–65.CrossRef
    31.N. Tsuchida, T. Kawahata, E. Ishimaru, and A. Takahashi: Tetsu–Hagane, 2013, vol. 99, pp. 517–23.CrossRef
    32.J.E. Wittig, M. Pozuelo, J.a. Jiménez, and G. Frommeyer: Steel Res. Int., 2009, vol. 80, pp. 66–70.
    33.M. Pozuelo, J. E. Wittig, J. A. Jiménez, and G. Frommeyer: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1826–34.CrossRef
    34.T.S. Byun, N. Hashimoto, and K. Farrell: Acta Mater., 2004, vol. 52, pp. 3889–99.CrossRef
    35.S.J. Kim, T.H. Lee, and C.S. Oh: Steel Res. Int., 2009, vol. 80, pp. 467–72.
    36.A. Kovalev, A. Jahn, A. Weiß, S. Wolf, and P. R. Scheller: Steel Res. Int., 2012, vol. 83, pp. 576–83.CrossRef
    37.B.C. De Cooman and J.G. Speer: Fundamentals of Steel Product Physical Metallurgy, Association for Iron and Steel Technology, Warrendale, 2011.
    38.A. Weidner, A. Müller, A. Weiss, and H. Biermann: Mater. Sci. Eng. A, 2013, vol. 571, pp. 68–76.CrossRef
    39.J.B. Seol, J.E. Jung, Y.W. Jang, and C.G. Park: Acta Mater., 2013, vol. 61, pp. 558–78.CrossRef
    40.M. Hauser, J. Mola, and A. Weiß: in HMnS 2014, Aachen, 2014, pp. 117–20.
    41.P.L. Mangonon and G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1577–86.CrossRef
    42.X.S. Yang, S. Sun, X.L. Wu, E. Ma, and T.Y. Zhang: Sci. Rep., 2014, vol. 4, p. 6141.CrossRef
    43.C. Ye, S. Suslov, D. Lin, and G.J. Cheng: Philos. Mag., 2012, vol. 92, pp. 1369–89.CrossRef
  • 作者单位:Andreas Weiß (1)
    Heiner Gutte (2)
    Javad Mola (1)

    1. Institute of Iron and Steel Technology, Technische Universität Bergakademie Freiberg, Freiberg, Germany
    2. Institute for Energy Process Engineering and Chemical Engineering, Technische Universität Bergakademie Freiberg, Freiberg, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Metallic Materials
    Structural Materials
    Physical Chemistry
    Ceramics,Glass,Composites,Natural Materials
  • 出版者:Springer Boston
  • ISSN:1543-1940
文摘
The deformation-induced processes by tensile loading of X5CrNi18-10 austenitic stainless steel in the temperature range of 77 K to 413 K (−196 °C to 140 °C) were investigated. The results were presented in the form of stress–temperature-transformation (STT) and strain–temperature-transformation (DTT) diagrams. The thermodynamic stability of the austenite with respect to the ε- and α′-martensite transformations was reflected in the STT and DTT diagrams. Furthermore, conclusions could be drawn from the transformation diagrams about the kinetics of stress- and strain-induced martensitic transformations. The diagrams laid foundations for the development of a new method of quantitative determination of strength and elongation contributions by means of induced and often overlapping deformation processes in the austenite. In this context, the plastic strains contributed by the glide and shearing of austenite were quantified and presented in connection with the ε and α′ TRansformation-Induced Plasticity effects. Each deformation process was shown to have made a contribution to the strength and ductility, with a magnitude proportional to its dominance. The summation of such contributions provided the tensile strength and the uniform elongation of the steel. In other words, tensile strength and uniform elongation could be derived from a rule of mixtures. The newly proposed method was capable of explaining the anomalous temperature dependence of uniform elongation in the alloy investigated. Manuscript submitted August 4, 2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700