Portable bacterial identification system based on elastic light scatter patterns
详细信息    查看全文
  • 作者:Euiwon Bae (1)
    Dawei Ying (2)
    Donald Kramer (3)
    Valery Patsekin (4)
    Bartek Rajwa (4) (5)
    Cheryl Holdman (4)
    Jennifer Sturgis (4)
    V Jo Davisson (6)
    J Paul Robinson (4) (5) (7)
  • 关键词:Portable bacterial identification ; Forward scattering ; Colony count ; Automation
  • 刊名:Journal of Biological Engineering
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:6
  • 期:1
  • 全文大小:631KB
  • 参考文献:1. Kawasaki K, Mochizuki A, Matsushita M, Umeda T, Shigesada N: Modeling spatio-temporal patterns generated by Bacillus subtilis. / J Theor Biol 1997, 188:177-85. CrossRef
    2. Lacasta AM, Cantalapiedra IR, Auguet CE, Penaranda A, Ramirez-Piscina L: Modeling of spatiotemporal patterns in bacterial colonies. / Phys Rev E 1999, 59:7036-041. CrossRef
    3. Mimura M, Sakaguchi H, Matsushita M: Reaction–diffusion modelling of bacterial colony patterns. / Physica A 2000, 282:283-03. CrossRef
    4. Barber PR, Vojnovic B, Kelly J, Mayes CR, Boulton P, Woodcock M, Joiner MC: Automated counting of mammalian cell colonies. / Phys Med Biol 2001, 46:63-6. CrossRef
    5. Bernard R, Kanduser M, Pernus F: Model-based automated detection of mammalian cell colonies. / Phys Med Biol 2001, 46:3061-072. CrossRef
    6. Corkidi G, Diaz-Uribe R, Folch-Mallol JL, Nieto-Sotelo J: COVASIAM: an image analysis method that allows detection of confluent microbial colonies and colonies of various sizes for automated counting. / Appl Environ Microbiol 1998, 64:1400-404.
    7. Marotz J, Lubbert C, Eisenbeiss W: Effective object recognition for automated counting of colonies in Petri dishes (automated colony counting). / Comput Meth Prog Bio 2001, 66:183-98. CrossRef
    8. Mukherjee DP, Pal A, Sarma SE, Majumder DD: Bacterial colony counting using distance transform. / Int J Biomed Comput 1995, 38:131-40. CrossRef
    9. Liu X, Wang S, Sendi L, Caulfield MJ: High-throughput imaging of bacterial colonies grown on filter plates with application to serum bactericidal assays. / J Immunol Methods 2004, 292:187-93. CrossRef
    10. Putman M, Burton R, Nahm MH: Simplified method to automatically count bacterial colony forming unit. / J Immunol Methods 2005, 302:99-02. CrossRef
    11. Clarke ML, Burton RL, Hill AN, Litorja M, Nahm MH, Hwang J: Low-Cost, high-throughput, automated counting of bacterial colonies. / Cytom Part A 2010, 77A:790-97. CrossRef
    12. Chen W-B, Zhang C: An automated bacterial colony counting and classification system. / Inform Syst Front 2009, 11:349-68. CrossRef
    13. Guo S: / Optical scattering for bacterial colony detection and characterization. Purdue University: Masters degree; 2004.
    14. Banada PP, Guo SL, Bayraktar B, Bae E, Rajwa B, Robinson JP, Hirleman ED, Bhunia AK: Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species. / Biosens Bioelectron 2007, 22:1664-671. CrossRef
    15. Bae E, Bai N, Aroonnual A, Bhunia AK, Hirleman ED: Label-free identification of bacterial microcolonies via elastic scattering. / Biotechnol Bioeng 2011, 108:637-44. CrossRef
    16. Bae E, Bai N, Aroonnual A, Robinson JP, Bhunia AK, Hirleman ED: Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns. / J Biomed Opt 2010, 15:019004. CrossRef
    17. Bae E, Banada PP, Huff K, Bhunia AK, Robinson JP, Hirleman ED: Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory. / Appl Opt 2007, 46:3639-648. CrossRef
    18. Bae E, Aroonnual A, Bhunia AK, Robinson JP, Hirleman ED: System automation for a bacterial colony detection and identification instrument via forward scattering. / Meas Sci Technol 2009, 20:015082. CrossRef
    19. Robinson JP, Rajwa BP, Dundar MM, Bae E, Patsekin V, Hirleman ED, Roumani A, Bhunia AK, Dietz JE, Davisson VJ, Thomas JG: A distributed national network for label-free rapid identification of emerging pathogens. In / Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII. Volume 8018. 1 edition. Edited by: Fountain Iii AW, Gardner PJ. Orlando: SPIE; 2011:80180C-80186C. Proceedings of SPIE
    20. Ballard DH: Generalizing the hough transform to detect arbitrary shapes. / Pattern Recognition 1981, 13:111-22. CrossRef
    21. Hough PVC: / A method and means for recognizing complex patterns. USA: US3069654; 1962.
    22. Leavers VF: Which Hough transform? / CVGIP: Image Understanding 1993, 58:250-64. CrossRef
    23. Mancas M, Gosselin B, Macq B: Segmentation using a region growing thresholding. In / Image Processing: Algorithms and Systems IV. Volume 5672. Edited by: EK O. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE)]; 2005:388-98.
    24. Pham DL, Xu CY, Prince JL: Current methods in medical image segmentation. / Annu Rev Biomed Eng 2000, 2:315-37. CrossRef
    25. Proffitt D, Rosen D: Metrication erros and coding efficiency of chain-encoding schemes for the representation of lines and edges. / Comput Vision Graph 1979, 10:318-32.
    26. Freeman H: On the encoding of arbitrary geometric configurations. / Electronic Computers, IRE Transactions on 1961, EC-10:260-68. CrossRef
    27. Banada PP, Huff K, Bae E, Rajwa B, Aroonnual A, Bayraktar B, Adil A, Robinson JP, Hirleman ED, Bhunia AK: Label-free detection of multiple bacterial pathogens using light-scattering sensor. / Biosens Bioelectron 2009, 24:1685-692. CrossRef
    28. Bayraktar B, Banada PP, Hirleman ED, Bhunia AK, Robinson JP, Rajwa B: Feature extraction from light-scatter patterns of Listeria colonies for identification and classification. / J Biomed Opt 2006, 11:34006. CrossRef
    29. Rajwa B, Dundar MM, Akova F, Bettasso A, Patsekin V, Hirleman ED, Bhunia AK, Robinson JP: Discovering the unknown: detection of emerging pathogens using a label-free light-scattering system. / Cytom Part A 2010, 77A:1103-112. CrossRef
  • 作者单位:Euiwon Bae (1)
    Dawei Ying (2)
    Donald Kramer (3)
    Valery Patsekin (4)
    Bartek Rajwa (4) (5)
    Cheryl Holdman (4)
    Jennifer Sturgis (4)
    V Jo Davisson (6)
    J Paul Robinson (4) (5) (7)

    1. School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
    2. School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
    3. Visiting researcher, Cytometry Laboratory, Purdue University, West Lafayette, IN, 47907, USA
    4. Dr. J. Paul Robinson Purdue University Cytometry Laboratory, Bindley Bioscience Center, Purdue University, 1203 West State Street, Discovery Park, West Lafayette, IN, 47907, USA
    5. Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
    6. Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
    7. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
  • ISSN:1754-1611
文摘
Background Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. Results This device, weighing 9?lb and measuring 12?×-?×-0.5?in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Conclusions Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700