Improving aggregate utility in IEEE 802.11p based vehicle-to-infrastructure networks
详细信息    查看全文
  • 作者:V. P. Harigovindan ; A. V. Babu ; Lillykutty Jacob
  • 关键词:Access fairness ; IEEE 802.11p ; Performance anomaly ; Residence time ; Multi ; lane V2I networks ; Multi ; rate V2I networks
  • 刊名:Telecommunication Systems
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:61
  • 期:2
  • 页码:359-385
  • 全文大小:1,307 KB
  • 参考文献:1.Alasmary, W., & Basir, O. (2011). Achieving efficiency and fairness in 802.11-based vehicle-to-infrastructure communications. In Proceedings of IEEE VTC-Spring, Budapest.
    2.Alasmary, W., & Zhuang, W. (2012). Mobility impact in IEEE 802.11p infrastructure less vehicular networks. Ad Hoc Networks, 10(2), 222–230.CrossRef
    3.Babu, A. V., & Jacob, L. (2007). Fairness analysis of IEEE 802.11 multi-rate wireless LAN. IEEE Transactions on Vehicular Technology, 56, 3073–3088.CrossRef
    4.Banchs, A., & Vollero, L. (2006). Throughput analysis and optimal configuration of 802.11e EDCA. Computer Networks, 50(11), 1749–1768.CrossRef
    5.Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRef
    6.Bychkovsky, V., Hull, B., Miu, A., Balakrishnan, H., & Madden, S. (2006). A measurement study of vehicular internet access using in situ Wi-Fi networks. In Proceedings of the 12th annual international conference on mobile computing and networking, MOBICOM 2006, Los Angeles, USA (pp. 50–61).
    7.Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking, 8(6), 785–799.CrossRef
    8.Chen, X., Refai, H. H., & Ma, X. (2010). On the enhancements to IEEE 802.11 MAC and their suitability for safety-critical applications in VANET. Wireless Communications and Mobile Computing, 10, 1253–1269.CrossRef
    9.Chiu, K.-L., & Hwang, R.-H. (2010). Communication framework for vehicle ad hoc network on freeways. Telecommunication Systems, pp. 1–14. doi:10.​1007/​s11235-010-9401-4 .
    10.Deng, D. J., Ke, C. H., Chen, H. H., & Huang, Y. M. (2008). Contention window optimization for IEEE 802.11 DCF access control. IEEE Transactions on Wireless Communications, 7(12), 5129–5135.CrossRef
    11.Eichler, S. (2007). Performance Evaluation of the IEEE 802.11p WAVE communication Standard. In Proceedings of IEEE VTC-Fall, Baltimore, MD (pp. 2199–2203). .
    12.Gerlough, D. L., & Huber, M. J. (1975). Traffic flow theory: A monograph. Washington, DC: Transportation Research Board, National Research Council.
    13.Gozalvez, J., Sepulcre, M., & Bauza, R. (2010) Impact of the radio channel modelling on the performance of VANET communication protocols. Telecommunincation System, pp. 1–19. doi:10.​1007/​s11235-010-9396-x .
    14.Hadaller, D., Keshav, S., & Brecht, T. (2006). MV-max: Improving wireless infrastructure access for multi-vehicular communication, In Proceedings of ACM SIGCOMM workshop on challenged networks (CHANTS-06), Pisa, Italy (pp. 269–276).
    15.Hamidian, A., & Korner, U. (2006). An enhancement to the IEEE 802.11e EDCA providing QoS guarantees. Telecommunication Systems, 31, 195–212.CrossRef
    16.Harigovindan, V. P., Babu, A. V., & Jacob, L. (2012). Ensuring fair access in IEEE 802.11p-based vehicle-to-infrastructure networks. EURASIP Journal on Wireless Communications and Networking, 2012, 168.CrossRef
    17.Harri, J., & Fiore, M. (2006). VanetMobiSim vehicular ad hoc network mobility extension to the CanuMobiSim framework. Institut Eurcom Department of Mobile Communications 6904. Sophia Antipolis, France.
    18.He, J., Tang, Z., O’Farrell, T., & Thomas, M. C. (2011). Performance analysis of DSRC priority mechanism for road safety applications in vehicular networks. Wireless Communications and Mobile Computing, 11(7), 980–990.CrossRef
    19.Heusse, M., Rousseau, F., Berger-Sabbatel, G., & Duda, A. (2003). Performance anomaly of 802.11b. In Proceedings of IEEE INFOCOM, San Francisco, USA.
    20.Hong, K., Lee, S. K., Kim, K., & Kim, Y. H. (2012). Channel condition based contention window adaptation in IEEE 802.11 WLANs. IEEE Transactions on Communications, 60(2), 469–479.CrossRef
    21.IEEE 802.11e/D4.0, Draft supplement to part 11: Wireless LAN MAC and PHY specifications: MAC enhancements for quality of service (QoS), November (2005).
    22.IEEE P802.11p/D5.0, Draft amendment to standard for information technology telecommunications and information exchange between systems LAN/MAN specific requirements Part 11: WLAN medium access control (MAC) and physical layer (PHY) specifications: Wireless access in vehicular environments (WAVE) (2008).
    23.IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN MAC and PHY Specifications (2007).
    24.Jain, R., Hawe, W., & Chiu, D. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems, DEC Research Report TR-301.
    25.Karamad, E., & Ashtiani, F. (2008). A modified 802.11-based MAC scheme to assure fair access for vehicle-to-roadside ccmmunications. Computer Communications, 31(12), 2898–2906.CrossRef
    26.Karedal, J., Czink, N., Paier, A., Tufvesson, F., & Molisch, A. F. (2011). Pathloss modeling for vehicle-to-vehicle communications. IEEE Transactions on Vehicular Technology, 60(1), 323–328.
    27.Luan, T. H., Ling, X., & Xuemin, S. (2010). MAC performance analysis for vehicle-to-infrastructure communication. In Proceedings of IEEE WCNC, Sydney, Australia.
    28.Luan, T. H., Ling, X., & Xuemin, S. (2012). MAC in motion: Impact of mobility on the MAC of drive-thru internet. IEEE Transaction on Mobile Computing, 11(2), 305–319.CrossRef
    29.Ma, X., Chen, X., & Refai, H. H. (2009). Performance and reliability of DSRC vehicular safety communication: A formal analysis. EURASIP Journal on Wireless Communications and Networking, 2009, 969164.CrossRef
    30.Ott, J., & Kutscher, D. (2004). Drive-thru internet: IEEE 802.11b for automobile users. In Proceedings of IEEE INFOCOM, Hong Kong.
    31.Park, C. G., Han, D. H., & Ahn, S. J. (2006). Performance analysis of MAC layer protocols in the IEEE 802.11 wireless LAN. Telecommunication Systems, 33, 233–253.CrossRef
    32.Roess, R. P., Prassas, E. S., & Mcshane, W. R. (2004). Traffic Engineering (3rd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
    33.Sheu, S.-T., Cheng, Y.-C., & Wu, J.-S. (2010). A channel access scheme to compromise throughput and fairness in IEEE 802.11p multi-rate/multi-channel wireless vehicular networks. In IEEE VTC, Taipei, Taiwan (pp. 1–5).
    34.Tan, G., & Guttag, J. (2004). Time-based fairness improves performance in multi-rate wireless LANs. In Proceedings of 2004 USENIX annual technical conference, June–July 2004, Boston, MA, USA.
    35.Tan, W. L., Lau, W. C., & Yue, O. (2009). Modeling resource sharing for a road-side access point supporting drive-thru internet. In Proceedings of the sixth ACM international workshop on vehiculAr InterNETworking, ACM VANET (pp. 33–42). New York, NY: ACM.
    36.Tan, W. L., Lau, W. C., Yue, O., & Hui, T. H. (2011). Analytical models and performance evaluation of drive-thru internet systems. IEEE JSAC, 29(1), 207–222.
    37.The NS2 Simulator. http://​www.​isi.​edu/​nsnam/​ns .
    38.Villalon, J., Cuenca, P., & Orozco-Barbosa, L. (2007). On the capabilities of IEEE 802.11e for multimedia communications over heterogeneous 802.11/802.11e WLANs. Telecommunication Systems, 36(1–3), 27–38.CrossRef
    39.Wang, Y., Ahmed, A., Krishnamachari, B., & Psounis, K. (2008). IEEE 802.11p performance evaluation and protocol enhancement. In Proceedings of IEEE international conference on vehicular electronics and safety (ICVES) 2008, Ohio, USA (pp. 317–322).
    40.Wu, H., Fujimoto, R. M., Riley, G. F., & Hunter, M. (2009). Spatial propagation of information in vehicular networks. IEEE Transactions on Vehicular Technology, 58(1), 420–431.CrossRef
    41.Xiao, Y. (2005). Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11 e wireless LANs. IEEE Transactions on Wireless Communications, 4.4(2005), 1506–1515.CrossRef
    42.Xie, L., Q. Li, Mao, W., Wu, J., & Chen, D. (2009). Achieving efficiency and fairness for association control in vehicular networks. In Proceedings of IEEE ICNP 2009, Princeton, NJ (pp. 324–333).
    43.Yang, Y., & Kravets, R. (2004). Distributed QoS guarantees for realtime traffic in ad hoc networks. In Proceedings of 2004 first annual IEEE communications society conference on SECON, Santa Clara, CA (pp. 118–127).
    44.Yang, Y., & Kravets, R. (2006). Achieving delay guarantees in ad hoc networks using distributed contention window adaptation. In IEEE INFOCOM 2006, 25th IEEE international conference on computer communications, Barcelona (pp. 1–12).
    45.Yang, D. Y., Lee, T.-J., Jang, K., Chang, J.-B., & Choi, S. (2006). Performance enhancement of multi-rate IEEE 802.11 WLANs with geographically scattered stations. IEEE Transactions on Mobile Computing, 5(7), 906–919.CrossRef
    46.Yang, Y., Wang, J., & Kravets, R. (2007). Distributed optimal contention window control for elastic traffic in single cell wireless LANs. IEEE Transactions on Networking, 15(6), 1373–1386.CrossRef
    47.Yoo, S. H., Choi, J.-H., Hwang, J.-H., & Yoo, C. (2005). Eliminating the Performance Anomaly of 802.11b. Springer Lecture Notes in Computer Science, 3421, 1055–1062.CrossRef
    48.Yousefi, S., Mousavi., M. S., & Fathy, M. (2006). Vehicular ad hoc networks (VANETs): Challenges and perspectives. In Proceedings of the 6th IEEE international conference on ITST, Chengdu, China (pp. 761–766).
    49.Zeadally, S., Hunt, R., Chen, Y., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETs): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241.CrossRef
  • 作者单位:V. P. Harigovindan (1)
    A. V. Babu (1)
    Lillykutty Jacob (1)

    1. Department of Electronics and Communication Engineering, National Institute of Technology Calicut, Calicut, 673601, India
  • 刊物类别:Business and Economics
  • 刊物主题:Economics
    Business Information Systems
    Computer Communication Networks
    Artificial Intelligence and Robotics
    Probability Theory and Stochastic Processes
  • 出版者:Springer Netherlands
  • ISSN:1572-9451
文摘
IEEE802.11p, also known as wireless access in vehicular environment defines amendments to IEEE 802.11 to support intelligent transportation systems applications, by enabling both vehicle-to-vehicle and vehicle-to-infrastructure (V2I) communications. The medium access control layer in IEEE 802.11p is based on IEEE 802.11e enhanced distributed channel access, while the physical layer is based on IEEE 802.11a standard. This paper investigates the problem of improving the aggregate utility in IEEE 802.11p based V2I networks, while ensuring fairness among the competing vehicles. Firstly, we consider a V2I network in drive-thru Internet scenario, formed by vehicles moving on a multi-lane highway with different mean velocities in different lanes, in which all the competing vehicles use the same data rate. For error-prone channels, we derive analytical expressions for the class specific optimal minimum contention window (\(CW_{\min }\)) values that simultaneously maximize the aggregate data transferred and provide fairness among vehicles belonging to distinct mean velocity classes in the sense of equal chance of communicating with the road side units. We also obtain an analytical expression for the maximum aggregate data transferred in the presence of channel error. In the second part, we extend the analytical model to compute the amount of successfully transferred data in a multi-rate multi-lane V2I network. In addition to the unfairness problem caused by the distinct velocities, vehicles in such networks suffer from a performance anomaly problem as well, due to the use of distinct data rates. We determine analytical expressions for the \(CW_{\min }\) values required to simultaneously resolve both the problems. Results show that, with proper tuning of \(CW_{\min }\) the aggregate data transferred in the network improves significantly. The analytical results are corroborated using extensive simulation studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700