Modeling the global ionospheric total electron content with empirical orthogonal function analysis
详细信息    查看全文
  • 作者:WeiXing Wan (1) wanw@mail.iggcas.ac.cn
    Feng Ding (1)
    ZhiPeng Ren (1)
    ManLian Zhang (1)
    LiBo Liu (1)
    BaiQi Ning (1)
  • 关键词:ionospheric modeling – ; total electron content – ; empirical orthogonal functions
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:55
  • 期:5
  • 页码:1161-1168
  • 全文大小:1.0 MB
  • 参考文献:1. Schunk R W, Sojka J J, Schunk R W. Ionospheric Models. In: Kohl H, Ruester R, Schlegel K, eds. Modern Ionospheric Science. European Geophysical Society, 1996. 181–215
    2. Cander L R, Leitinger R, Levy M F. Ionospheric Models Including the Auroral Environment. Workshop on Space Weather. The Netherlands: European Space Agency, 1999. 135–142
    3. Bilitza D. Ionospheric Models for Radio Propagation Studies. The Review of Radio Science. Piscataway: IEEE Press, 2002. 625–679
    4. Bent R B, Llewellyn S K, Walloch M K. Description and Evaluation of the Bent Ionospheric Model, Space & Missile Systems Organization. Report SAMSO TR-72-239, Los Angeles, California, 1972
    5. Bent R B, Llewellyn S K, Nesterczuk G, et al. The Development of a Highly Successful Worldwide Empirical Ionosphere Model and Its Use in Certain Aspects of Space Communications and World-Wide Total Electron Content Investigations. In: Goodman J M, ed. Effects of the Ionosphere on Space Systems and Communications. Springfield: National Technical Information Service, 1975. 13–28
    6. Rawer K, Ramakrishnan S, Bilitza D. International Reference Ionosphere 1978. Brussels: International Union of Radio Science, 1978
    7. Rawer K, Lincoln J V, Conkright R O, eds. International Reference Ionosphere IRI-79. Report UAG-82, Boulder, Colorado, World Data Center A for Solar-Terrestrial Physics, 1981
    8. Bilitza D. International Reference Ionosphere 1990. NSSDC Report 90-22. National Space Science Data Center, Greenbelt, USA, 1990
    9. Bilitza D. International Reference Ionosphere 2000. Radio Sci, 2001, 36: 261–275
    10. Hochegger G, Nava B, Radicella S, et al. A Family of Ionospheric Models for Different Uses. Physics and Chemistry of the Earth, Part C, 2000, 25: 307–310
    11. Radicella S M, Leitinger R. The Evolution of the DGR Approach to Model Electron Density Profiles. Adv Space Res, 2001, 27: 35–40
    12. Leitinger R, Radicella S, Hochegger G, et al. Diffusive Equilibrium Models for the Height Region above the F2 Peak. Adv Space Res, 2002, 29: 809–814
    13. Klobuchar J A. Ionospheric Time Delay Algorithm for Single Frequency GPS Users. IEEE T Aeros Electron Syst, 1987, 23: 325–331
    14. Brown L D, Daniel R E, Fox M W, et al. Evaluation of six ionospheric models as predictors of total electron content. Radio Sci, 1991, 26: 1007–1015
    15. Co茂sson P, Radicell S M, Leitinger R, et al. Are models predicting a realistic picture of vertical, total electron content. Radio Sci, 2004, 39: RS1S14, doi:10.1029/2002RS002823
    16. Poulter E M, Hargreaves J K. A harmonic analysis of ATS-6 electron content observation at Lancaster, UK, during 1975–6. Ann Geophys, 1981, 37: 405–415
    17. Baruah S, Bhuyan P K, Tyagi T R. Modeling of ionospheric electron content over Lunping-An empirical approach. Indian J Radio Space Phys, 1993, 22: 325–330
    18. Jain S, Vijay S K, Gwal A K. An empirical model for IEC over Lunping. Adv Space Res, 1996, 18: 263–266
    19. Bradley P. PRIME (Prediction and Retrospective Ionospheric Modelling over Europe), Action 238, Final Report, Rutherford Appleton Laboratory, Chilton Didcot, UK, European Cooperation in the field of Scientific and Technical Research (COST), 1999
    20. Hanbaba R. Improved Quality of Services in Ionospheric Telecommunication Systems Planning and Operation, Action 251, Final Report, Warsaw, Poland, Space Research Centre, European Cooperation in the field of Scientific and Technical Research (COST), 1999
    21. Gulyaeva T L. Regional Analytical Model of Ionospheric Total Electron Content: Monthly Mean and Standard Deviation. Radio Science, 1999, 34: 1507–1512
    22. Chen Y, Wan W, Liu L, et al. A statistical TEC model based on the observation at Wuhan Ionospheric Observatory. Chin J Space Sci, 2002, 34: 27–35
    23. Unnikrishnan K, Balachandran R, Venugopal C. Harmonic analysis and an empirical model for TEC over Palehua. J Atmos Sol Terr Phys, 2002, 64: 1833–1840
    24. Mao T, Wan W, Liu L. An EOF based empirical model of TEC over Wuhan. Chin J Geophys, 2005, 48: 827
    25. Mao T, Wan W, Yue X, et al. An empirical orthogonal function model of total electron content over China. Radio Sci, 2008, 43, RS2009, doi:10.1029/2007RS003629
    26. Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci, 1998, 33: 565–582
    27. Or煤s R, Hern谩ndez-Pajares M, Juan J M, et al. Performance of different TEC models to provide GPS ionospheric corrections. J Atmos Sol Terr Phys, 2002, 64: 2055–2062
    28. Or煤s R, Herna’ndez-Pajares M, Juan J M, et al. Improvement of global ionospheric VTEC maps by using Kriging interpolation technique. J Atmos Sol Terr Phys, 2005, 67: 1598–1609
    29. Storch H V, Zwiers F W. Statistical Analysis in Climate Research. Cambridge University Press, 2002
    30. Zhao B, Wan W, Liu L, et al. Statistical characteristics of the total ion density in the topside ionosphere during the period 1996–2004 using empirical orthogonal function (EOF) analysis. Ann Geophy, 2005, 23: 3615–3631
    31. Liu C, Zhang M L, Wan W, et al. Modeling M(3000)F2 based on empirical orthogonal function analysis method. Radio Sci, 2008, 43: RS1003, doi:10.1029/2007RS003694
    32. Zhang M L, Liu C, Wan W, et al. A global model of the ionospheric F2 peak height based on EOF analysis. Ann Geophys, 2009, 27: 3203–3212
    33. Zhang M L, Liu C, Wan W, et al. Evaluation of global modeling of M(3000)F2 and hmF2 based on alternative empirical orthogonal function expansions. Adv Space Res, 2010, 46: 1024–1031
    34. Hern谩ndez-Pajares M. Performance of IGS Ionosphere TEC Maps. IGS IONO WG Report, Research Group of Astronomy and Geomatics, Barcelona Technical University of Catalonia (gAGE/UPC), Spain, 2003
    35. Iijima B A, Harris I L, Ho C M, et al. Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data. J Atmos Sol Terr Phys, 1999, 61: 1205
    36. Afraimovich E L, Astafyeva E I, Zhivetiev I V. Solar activity and global electron content. Doklady Earth Sci, 2006, 409: 921–924
    37. She C, Wan W, Xu G. Climatological analysis and modeling of the ionospheric global electron content. Chin Sci Bull, 2008, 53: 282–288
    38. Rishbeth H, Muller-Wodar I C F, Zou L, et al. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann Geophys, 2000, 18: 945–956
    39. Rishbeth H, Muller-Wodarg I C F. Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer. Ann Geophys, 2006, 24: 3293–3311
    40. Zou L, Rishbeth H, Muller-Wodarg I C F, et al. Annual and semiannual variations in the ionospheric F2-layer: I. Modelling. Ann Geophys, 2000, 18: 927–944
    41. Yu T, Wan W, Liu L, et al. Global scale annual and semi-annual variations of daytime NmF2 in the high solar activity years. J Atmosph Solar-Terr Phys, 2004, 66: 1691–1701
    42. Liu L, Zhao B, Wan W, et al. Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology. Ionosphere, and Climate mission radio occultation measurements. J Geophy Res, 2009, 114, doi:10.1029/2008JA013819
    43. Codrescu M V, Palo S E, Zhang X, et al. TEC climatology derived from TOPEX/POSEIDON measurements. J Atmos Sol Terr Phys, 1999, 61: 281–298
    44. Codrescu M V, Beierle K L, Fuller-Rowell T J, et al. More total electron content climatology from TOPEX/Poseidon measurements. Radio Sci, 2001, 36: 325–333
    45. Jee G, Schunk R W, Scherliess L. Analysis of TEC data from the TOPEX/Poseidon mission. J Geophys Res, 2004, 109: A01301, doi:10.1029/2003JA010058
    46. Mendillo M, Huang C L, Pi X, et al. The global ionospheric asymmetry in total electron content. J Atmos Sol Terr Phys, 2005, 67: 1377–1387
    47. Rishbeth H. How the thermospheric circulation affects the ionospheric F2-layer. J Atmos Sol Terr Phys, 1998, 60 (14): 1385–1402
    48. Fuller-Rowell T J. The “thermospheric spoon”: A mechanism for the semiannual density variation. J Geophys Res, 1998, 103: 3951–3956
    49. Zeng Z, Burns A, Wang W, et al. Ionospheric annual asymmetry observed by the COSMIC radio occultation measurements and simulated by the TIEGCM. J Geophys Res, 2008, 113: A07305, doi: 10.1029/2007JA012897
  • 作者单位:1. Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
    Engineering, general
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1900
文摘
In the present work we model the global ionospheric total electron content (TEC) with the analysis of empirical orthogonal functions (EOF). The obtained statistical eigen modes, which makeup the modeled TEC, consist of two factors: the eigen vectors mapping TEC patterns at latitude and longitude (or local time LT), and the corresponding coefficients displaying the TEC variations in different time scales, i.e., the solar cycle, the yearly (annual and semiannual) and the diurnal universal time variations. It is found that the EOF analysis can separate the TEC variations into chief processes and the first two modes illustrate the most of the ionospheric climate properties. The first mode contains both the semiannual component which shows the semiannual ionospheric anomaly and the annual component which shows the annual or non-seasonal ionospheric anomaly. The second mode contains mainly the annual component and shows the normal seasonal ionospheric variation at most latitudes and local time sectors. The annual component in the second mode also manifests seasonal anomaly of the ionosphere at higher mid-latitudes around noontime. It is concluded that the EOF analysis, as a statistical eigen mode method, is resultful in analyzing the ionospheric climatology hence can be used to construct the empirical model for the ionospheric climatology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700