Energy budget of the magnetosphere-ionosphere system in solar Cycle 23
详细信息    查看全文
  • 作者:WenYao Xu (1) wyxu@mail.iggcas.ac.cn
    AiMin Du (1)
  • 关键词:solar wind ; magnetosphere coupling – ; coupling function – ; magnetotail – ; energy budget
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:55
  • 期:5
  • 页码:1184-1188
  • 全文大小:591.4 KB
  • 参考文献:1. Akasofu S I. Energy coupling between the solar wind and the magnetosphere. Space Sci Rev, 1981, 28: 121–190
    2. Stern D P. Energetics of the magnetosphere. Space Sci Rev, 1984, 39: 193–213
    3. Tsurutani B T, Slavin J A, Kamide Y, et al. Coupling between the solar wind and the magnetosphere: CDAW 6. J Geophys Res, 1985, 90: 1191–1199
    4. Baujmiohanm W. Some recent progress in substorm studies. J Geomagn Geoelec, 1986, 38: 633–645
    5. Kamide Y, Baujmiohann W. Magnetosphere-ionosphere coupling. Berlin Heideberg: Springer -Verlag, 1993
    6. Merkin V G, Sharma A S, Papadopoulos K, et al. Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation. J Geophys Res, 2005, 110: A09203, doi:10.1029/2004JA010993
    7. Lu G. High-speed streams, coronal mass ejections, and interplanetary shocks: A comparative study of geoeffectiveness. In: Recurrent Magnetic Storms: Cototating Solar Wind Streams, edited by Tsurutani B, McPherron R, Gonzalez W, et al. Washington D C: AGU, 2006
    8. Hu Y Q, Guo X C, Wang C. On the ionospheric and reconnection potentials of the Earth: Results from global MHD simulations. J Geophys Res, 2007, 112: A07215, doi:10.1029/2006JA012145
    9. Tsurutani B T, Gonzalez W. The efficiency of ‘viscous interaction’ between the solar wind and the magnetosphere during intensenorthward IMF events. Geophys Res Lett, 1995, 22: 663–666
    10. Dessler A J, Parker E N. Hydromagnetic theory of geomagnetic storms. J Geophys Res, 1959, 64: 2239–2252
    11. Kistler L M, Ipavich F M, Hamilton D C, et al. Energy spectra of the major ion species in the ring current during geomagnetic storms. J Geophys Res, 1989, 94: 3579–3599
    12. Turner N E, Cramer W D, Earles S K, et al. Geoefficiency and energy partitioning in CIR-driven and CME-driven storms. J Atmos Sol Terr Phys, 2009, doi:10.1016/j.jastp.2009.02.005
    13. Perrealt P, Akasofu S I. A study of geomagnetic storm. Geophys J R Astron Soc, 1978, 54: 547
    14. Kan J R, Lee L C. Energy coupling and the solar wind dynamo. Geophys Res Lett, 1979, 6: 577–580
    15. Stamper R, Lockwood M, Wild M N. Solar causes of the long-term increase in geomagnetic activity. J Geophys Res, 1999, 104(A12): 28325–28342
    16. 脴stgaard N, Vondrak R R, Gjerloev J W, et al. A relation between the energy deposition by electron, precipitation and geomagnetic indices during substorms. J Geophys Res, 2002, 107(A9): 1246, doi: 10.1029/2001JA002002
    17. Newell P T, Sotirelis T, Liou K, et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res, 2007, 112: A01206, doi: 10.1029/2006JA012015
    18. Borovsky J E. The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles. J Geophys Res, 2008, 113: A08228, doi:10.1029/2007JA012646
    19. Lu G, Baker D N, Farrugia C J, et al. Global energy deposition during the January 1977, magnetic cloud evend. J Geophys Res, 1998, 103: 11695–11684
    20. Zhang J. Solar and interplanetary sources of major geomagnetic storms (Dst⩽−100 nT) during 1996–2005. J Geophys Res, 2007, 112: A10102, doi:10.1029/2007JA012321
    21. Du A M, Tsurutani B T, Sun W. Anomalous geomagnetic storm of 21–22 January 2005: A storm main phase during northward IMFs. J Geophys Res, 2008, 113: A10214, doi:10.1029/2008JA013284
    22. Davis T N, Parthasarathy R. Relationship between polar magnetic activity DP and growth of the geomagnetic ring current. J Geophys Res, 1967, 72: 5825–5836
    23. Cummings W D. Asymmetric currentsand the low latitudedisturbance daily variation. J Geophys Res, 1966, 71: 4495–4503
  • 作者单位:1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
    Engineering, general
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1900
文摘
The energy budget of the magnetosphere-ionosphere (MI) system during 1998–2008 was examined by using Akasofu’s epsilon function. The results showed that 1) the yearly average rate of solar wind energy input into the MI system was 4.51 GGJ (GGJ=1018 J), while the yearly average total dissipation was 4.30 GGJ; 2) the energy partitioning in the ring current and polar region was 56%:44%; 3) the energy input and dissipation processes continuously proceeded both in storm-substorm events and less disturbed intervals, suggesting the significant contribution of slow but long-lasting energy process during the less disturbance periods to the total energy budget. In addition, we found in this study an interesting phenomenon “self-adjustment ability” of the MI system which behaves just like a water reservoir. During solar active years, the input energy is more than the dissipated energy, implying that a portion of the input energy is not immediately released, but is stored in the magnetosphere. On the other hand, during less active years, the dissipated energy is more than the input energy, implying that the previously stored energy makes up for the energy input shortage in this period.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700