Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet: insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis
详细信息    查看全文
  • 作者:Jinxiang Li (1) ljx@mail.iggcas.ac.cn
    Kezhang Qin (2) kzq@mail.iggcas.ac.cn
    Guangming Li (2) liguangming0505@yahoo.com.cn
    Mingjian Cao (2) jiancaoming@163.com
    Bo Xiao (23) xiaobo06@mail.iggcas.ac.cn
    Lei Chen (4) chenlei@mail.igcas.ac.cn
    Junxing Zhao (2) junxingzhao@tom.com
    Noreen J. Evans (56) Noreen.Evans@csiro.au
    Brent I. A. McInnes (56) B.McInnes@curtin.edu.au
  • 刊名:Mineralogy and Petrology
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:105
  • 期:3-4
  • 页码:201-221
  • 全文大小:6.0 MB
  • 参考文献:1. Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79
    2. Arribas A, Hedenquist JW, Itaya T, Okada T, Concepcion RA, Garcia JS (1995) Contemporaneous formation of adjacent porphyry and epithermal Cu–Au deposits over 300 Ka in Northern Luzon, Philippines. Geology 23:337–340
    3. Ballard JR, Palin JM, Williams IS, Campbell IH, Faunes A (2001) Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 29:383–386
    4. Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622
    5. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170
    6. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57
    7. Bowring SA, Schmitz MD (2003) High-precision U–Pb zircon geochronology and the stratigraphic record. Rev Mineral Geochem 53:305–326
    8. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114
    9. Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51
    10. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500
    11. Dai SA, Fang XM, Song CH, Gao JP, Gao DL, Li JJ (2005) Early tectonic uplift of the northern Tibetan Plateau. Chin Sci Bull 50:1642–1652
    12. Deckart K, Clark AH, Aguilar C, Vargas R, Bertens A, Mortensen JK, Fanning M (2005) Magmatic and hydrothermal chronology of the giant Rio Blanco porphyry copper deposit, central Chile: implications of an integrated U–Pb and 40Ar/39Ar database. Econ Geol 100:905–934
    13. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665
    14. Deng WM, Sun HJ, Zhang YQ (2001) Petrogenesis of Cenozoic potassic volcanic rocks in Nangqen Basin. Chin J Geol 36:304–318 (in Chinese with English abstract)
    15. Ehlers TA, Farley KA (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206:1–14
    16. Evans NJ, Byrne JP, Keegan JT, Dotter LE (2005) Determination of uranium and thorium in zircon, apatite, and fluorite: application to laser (U–Th)/He thermochronology. J Anal Chem 60:1159–1165
    17. Farley KA (2002) (U–Th)/He dating: techniques, calibrations, and applications. Rev Mineral Geochem 47:819–844
    18. Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229
    19. Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840
    20. Fu FQ, McInnes BIA, Evans NJ, Davies PJ (2010) Numerical modeling of magmatic-hydrothermal systems constrained by U–Th–Pb–He time–temperature histories. J Geochem Explor 106:90–109
    21. Gao J, Klemd R, Long LL, Xiong XM, Qian Q (2009) Adakitic signature formed by fractional crystallization: an interpretation for the Neo-Proterozoic meta-plagiogranites of the NE Jiangxi ophiolitic melange belt, South China. Lithos 110:277–293
    22. Gao YF, Yang ZS, Santosh M, Hou ZQ, Wei RH, Tian SH (2010) Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos 119:651–663
    23. Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147
    24. Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269
    25. Gu XX, Tang JX, Wang CS, Chen JP, He BB (2003) Himalayan magmatism and porphyry copper–molybdenum mineralization in the Yulong ore belt, East Tibet. Miner Petrol 78:1–20
    26. Guo LG, Liu YP, Xu W, Zhang XC, Qin KZ, Li TS, Shi YR (2006) Constraints to the mineralization age of the Yulong porphyry copper deposit from SHRIMP U–Pb zircon data in Tibet. Acta Petrol Sin 22:1009–1016 (in Chinese with English abstract)
    27. Halter W, Heinrich C, Pettke T (2005) Magma evolution and the formation of porphyry Cu–Au ore fluids: evidence from silicate and sulfide melt inclusions. Miner Depos 39:845–863
    28. Harris AC, Dunlap WJ, Reiners PW, Allen CM, Cooke DR, White NC, Campbell IH, Golding SD (2008) Multimillion year thermal history of a porphyry copper deposit: application of U–Pb, Ar-40/Ar-39 and (U–Th)/He chronometers, Bajo de la Alumbrera copper–gold deposit, Argentina. Miner Depos 43:295–314
    29. Hess JC, Lippolt HJ (1986) Kinetics of Ar isotopes during neutron-irradiation 39Ar loss from minerals as a source of error in 40Ar/39Ar dating. Chem Geol 59:223–236
    30. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62
    31. Hou ZQ, Ma HW, Zaw K, Zhang YQ, Wang MJ, Wang Z, Pan GT, Tang RL (2003) The Himalayan Yulong porphyry copper belt: product of large-scale strike-slip faulting in eastern Tibet. Econ Geol 98:125–145
    32. Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet Sci Lett 220:139–155
    33. Hou ZQ, Zeng PS, Gao YF, Du AD, Fu DM (2006) Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: constraints from Re-Os dating of molybdenite. Miner Depos 41:33–45
    34. Hou ZQ, Xie YL, Xu WY, Li YQ, Zhu XK, Khin Z, Beaudoin G, Rui ZY, Wei HA, Ciren L (2007) Yulong deposit, eastern Tibet: a high-sulfidation Cu–Au porphyry copper deposit in the eastern Indo-Asian collision zone. Int Geol Rev 49:235–258
    35. Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF, Zaw K (2009) The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol Rev 36:25–51
    36. Hou ZQ, Zhang HR, Pan XF, Yang ZM (2011) Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geol Rev 39:21–45
    37. Hourigan JK, Reiners PW, Brandon MT (2005) U–Th zonation-dependent alpha-ejection in (U–Th)/He chronometry. Geochim Cosmochim Acta 69:3349–3365
    38. House MA, Wernicke BP, Farley KA (1998) Dating topography of the Sierra Nevada, California, using apatite (U–Th)/He ages. Nature 396:66–69
    39. Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ (2009) Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol 262:229–245
    40. Jiang YH, Jiang SY, Ling HF, Dai BZ (2006) Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: geochemical and Sr–Nd–Pb–Hf isotopic constraints. Earth Planet Sci Lett 241:617–633
    41. Jiang YH, Jiang SY, Dai BZ, Ling HF (2008) Discrimination of ore-bearing and barren porphyries in the Yulong porphyry copper ore belt, eastern Tibet. Int Geol Rev 50:583–595
    42. Karsli O, Dokuz A, Uysal I, Aydin F, Kandemir R, Wijbrans J (2010) Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114:109–120
    43. Li GM, Li JX, Qin KZ, Zhang TP, Xiao B (2007) High temperature, salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper deposit in the Bangonghu tectonic belt, Tibet: evidence from fluid inclusions. Acta Petrol Sin 23:935–952 (in Chinese with English abstract)
    44. Li JX, Li GM, Qin KZ, Xiao B (2008) Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet: constraints on metallogenic tectonic settings. Acta Petrol Sin 24:531–543 (in Chinese with English abstract)
    45. Li JX, Li GM, Qin KZ, Xiao B (2011a) High temperature primary magmatic fluid directly exsolved from magma at Duobuza gold-rich porphyry copper deposit, Northern Tibet. Geofluids 11:134–143
    46. Li JX, Qin KZ, Li GM, Xiao B, Chen L, Zhao JX (2011b) Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: melting of thickened juvenile arc lower crust. Lithos 126:265–277
    47. Li JX, Qin KZ, Li GM, Xiao B, Zhao JX, Chen L (2011c) Magmatic-hydrothermal evolution of cretaceous Duolong gold-rich porphyry copper deposit in Bangongco metallogenic belt, Tibet: evidence from U–Pb and 40Ar/39Ar geochronology. J Asian Earth Sci 41:525–536
    48. Li GM, Li JX, Qin KZ, Duo J, Zhang TP, Xiao B, Zhao JX (2012a) Geology and hydrothermal alteration of the Duobuza gold-rich porphyry copper district in the Bangongco metallogenetic belt, Northwestern Tibet. Resour Geol 62:99–118
    49. Li JX, Li GM, Qin KZ, Xiao B, Chen L, Zhao JX (2012b) Mineralogy and mineral chemistry of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco arc, northern Tibet. Resour Geol 62:19–41
    50. Liang HY, Campbell IH, Allen C, Sun WD, Liu CQ, Yu HX, Xie YW, Zhang YQ (2006) Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Miner Depos 41:152–159
    51. Liang HY, Mo JH, Sun WD, Yu HX, Zhang YQ, Allen CM (2008) Study on the duration of the ore-forming system of the Yulong giant porphyry copper deposit in eastern Tibet, China. Acta Petrol Sin 24:2352–2358 (in Chinese with English abstract)
    52. Liang HY, Sun WD, Su WC, Zartman RE (2009) Porphyry copper–gold mineralization at Yulong, China: promoted by decreasing redox potential during magnetite alteration. Econ Geol 104:587–596
    53. Ludwig KR (2003) ISOPLOT 3.0: a geochronological toolkit for microsoft excel. Berkeley Geochronology Center, Special publication 1–71
    54. Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593
    55. Maksaev V, Munizaga F, McWilliams M, Fanning M, Marthur R, Ruiz J, Zentilli M (2004) New chronology for EI Teniente, Chilean Andes, from U–Pb, 40Ar/39Ar, Re–Os, and fission track dating: implications for the evolution of a supergiant porphyry Cu–Mo deposit. Soc Econ Geol Spec Publ 11:15–54
    56. Marsh TM, Einaudi MT, McWilliams M (1997) 40Ar/39Ar geochronology of Cu–Au and Au–Ag mineralization in the Potrerillos District, Chile. Econ Geol 92:784–806
    57. Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429
    58. McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford, New York
    59. McInnes BIA, Cameron EM (1994) Carbonated, alkaline hybridizing melts from a sub-arc environment—mantle wedge samples from the Tabar-Lihir Tanga-Feni Arc, Papua-New-Guinea. Earth Planet Sci Lett 122:125–141
    60. McInnes BIA, Evans NJ, Fu FQ, Garwin S (2005) Application of thermochronology to hydrothermal ore deposits. Rev Mineral Geochem 58:467–498
    61. Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD, Yang ZM (2007) Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96:225–242
    62. Moyen JF (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112:556–574
    63. Mungall JE (2002) Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30:915–918
    64. Norton DL (1982) Fluid and heat transport phenomena typical of copper-bearing pluton environments, southeastern Arizona. In: Titley SR (ed) Advances in geology of porphyry copper deposits; southwestern North America. University of Arizona Press, Tucson, pp 59–73
    65. Padilla-Garza RA, Titley SR, Eastoe CJ (2004) Hypogene evolution of the Escondida porphyry copper deposit, Chile. Soc Econ Geol Spec Publ 11:141–165
    66. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic-rocks from Kastamonu Area, Northern Turkey. Contrib Mineral Petrol 58:63–81
    67. Peytcheva I, von Quadt A, Georgiev N, Ivanov Z, Heinrich CA, Frank M (2008) Combining trace-element compositions, U–Pb geochronology and Hf isotopes in zircon to unravel complex calcalkaline magma chambers in the Upper Cretaceous Srednogorie zone (Bulgaria). Lithos 104:405–427
    68. Peytcheva I, von Quadt A, Neubauer F, Frank M, Nedialkov R, Heinrich C, Strashimirov S (2009) U–Pb dating, Hf-isotope characteristics and trace-REE-patterns of zircon from Medet porphyry copper deposit, Bulgaria: implications for timing, duration and sources of ore-bearing magmatism. Miner Petrol 96:19–41
    69. Qin KZ, Tosdal RM, Li GM, Zhang Q, Li JL (2005) Formation of the Miocene porphyry Cu (-Mo-Au) deposits in the Gangdese arc, southern Tibet, in a transitional tectonic setting. Miner Depos Res Meet Chall 3:44–47
    70. Qu XM, Hou ZQ, Li YG (2004) Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos 74:131–148
    71. Qu XM, Hou ZQ, Zaw K, Mo XX, Xu WY, Xin HB (2009) A large-scale copper ore-forming event accompanying rapid uplift of the southern Tibetan Plateau: evidence from zircon SHRIMP U–Pb dating and LA ICP-MS analysis. Ore Geol Rev 36:52–64
    72. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32-Kbar—implications for continental growth and crust–mantle recycling. J Petrol 36:891–931
    73. Rapp RP, Xiao L, Shimizu N (2002) Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrol Sin 18:293–302
    74. Reiners PW (2005) Zircon (U–Th)/He thermochronometry. Rev Mineral Geochem 58:151–179
    75. Richards JP (2009) Postsubduction porphyry Cu–Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology 37:247–250
    76. Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40:1–26
    77. Shafiei B, Haschke M, Shahabpour J (2009) Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner Depos 44:265–283
    78. Sillitoe RH (1997) Characteristics and controls of the largest porphyry copper–gold and epithermal gold deposits in the circum-Pacific region. Aust J Earth Sci 44:373–388
    79. Sillitoe RH, Mortensen JK (2010) Longevity of porphyry copper formation at Quellaveco, Peru. Econ Geol 105:1157–1162
    80. S?derlund U, Patchett JP, Vervoort JD, Isachsen CE (2004) The Lu-176 decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324
    81. Sun SS, McDonough WE (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition an processes In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society of London, Special Publication, pp 313–345
    82. Tang RL, Luo HS (1995) The geology of Yulong porphyry copper (molybdenum) ore belt, Xizang (Tibet). Geological Publishing House, Beijing, p 320, in Chinese with English abstract
    83. Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556
    84. von Quadt A, Erni M, Martinek K, Moll M, Peytcheva I, Heinrich CA (2011) Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39:731–734
    85. Wang F, Lo CH, Li Q, Wan JL, Zheng DW, Wang EQ (2002) Unroofing around Qaidam Basin of northern Tibet at 30 Ma: constraints from 40Ar/39Ar and FT thermochronology on granitoids. Sci China Ser D 45:70–83
    86. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844
    87. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W (1995) 3 natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostand Newsl 19:1–23
    88. Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126
    89. Xiao B, Qin KZ, Li GM, Li JX, Xia DX, Chen L, Zhao JX (2012) Highly oxidized magma and fluid evolution of Miocene Qulong giant porphyry Cu–Mo deposit, southern Tibet, China. Resour Geol 62:4–18
    90. Xie YL, Hou ZQ, Xu JH, Yang ZM, Xu WY, He JP (2005) Evolution of multi-stage ore-forming fluid and mineralization: evidence form fluid inclusions in Yulong porphyry copper deposit, East Tibet. Acta Petrol Sin 21:1409–1415 (in Chinese with English abstract)
    91. Xie LW, Zhang YB, Zhang HH, Sun JF, Wu FY (2008) In situ simultaneous determination of trace elements, U–Pb and Lu–Hf isotopes in zircon and baddeleyite. Chin Sci Bull 53:1565–1573
    92. Xu WC, Zhang HF, Guo L, Yuan HL (2010) Miocene high Sr/Y magmatism, south Tibet: product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos 114:293–306
    93. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan–Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280
    94. Zhang YQ, Xie YW (1997) Geochronology of Ailaoshan-Jinshajing alkali-rich intrusive rocks and their Sr and Nd isotopic characteristics. Sci China Ser D 40:524–529
    95. Zhong DL, Ding L (1996) Rising process of the Qinghai-Xizang (Tibet) plateau and its mechanism. Sci China Ser D 39:369–379
  • 作者单位:1. Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 4A Datun Road, Chaoyang District, Beijing, 100085 China2. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beitucheng West Road 19#, Chaoyang District, Beijing, 100029 People’s Republic of China3. China Nonferrous Metal Mining (Group) Co., Ltd, Anli Road 10#, Chaoyang District, Beijing, 100029 China4. MRL Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing, 100037 China5. CSIRO Earth Science and Resource Engineering, 26 Dick Perry Ave., Kensington, WA 6151, Australia6. John De Laeter Center for Isotope Research, Department of Applied Geology/Applied Physics, Curtin University, Perth, WA 6945, Australia
  • ISSN:1438-1168
文摘
The Yulong porphyry copper deposit (6.5 Mt at 0.46 % Cu) in eastern Tibet was formed in a post-collisional setting. New zircon U–Pb and U–Th/He ages, apatite U–Th/He ages and in-situ zircon Hf isotopic and trace element data for the Yulong ore-bearing adakitic porphyries elucidate the thermal history and petrogenesis of the deposit. Zircon U–Pb ages range from from 41.2 Ma to 40.7 Ma, indicating an Eocene formation age. Combined with the zircon U–Th/He age of 37.5?±?1.2 Ma, results suggest that magmatic-hydrothermal evolution lasted up to 5 m.y. The apatite U–Th/He age of 33.4?±?0.9 Ma reflects Yulong deposit exhumation during the ~33–30 Ma Tibetan uplift. Moreover, the high εHf(t)-values (7.1?~?12.2) zircon yield the highest ΣREE content, higher Y/Hf, lower Ce/Ce* and higher Th/U ratios compared to inherited zircon or magmatic zircon suggesting that the high εHf(t) zircon crystallized from another magma, and that magma mixing probably contributed to the adakitic porphyries at Yulong. In addition, inherited and magmatic zircon with the lowest εHf(t) values (?20.6?~??4.4) suggest crustal contamination. The positive zircon εHf(t) values indicate a source in the juvenile arc lower crust. Significantly, the juvenile arc lower crust inherited arc magma characteristics (abundant F, Cl, Cu and high oxidation state), which are now found in the porphyry Cu–Mo deposits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700