Influence of the metal loading on the electrocatalytic activity of carbon-supported (100) Pt nanoparticles
详细信息    查看全文
  • 作者:Francisco J. Vidal-Iglesias ; Vicente Montiel…
  • 关键词:Platinum ; Shaped nanoparticles ; Formic acid ; CO stripping ; Ammonia
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:20
  • 期:4
  • 页码:1107-1118
  • 全文大小:1,605 KB
  • 参考文献:1.Chen J, Lim B, Lee EP, Xia Y (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4(1):81–95CrossRef
    2.Peng Z, Yang H (2009) Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4(2):143–164CrossRef
    3.Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39(6):2184–2202CrossRef
    4.Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110(6):3767–3804CrossRef
    5.Vismadeb Mazumder YL, Sun S (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20:1224–1234CrossRef
    6.Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3(5):2054–2073CrossRef
    7.Solla-Gullon J, Vidal-Iglesias FJ, Feliu JM (2011) Shape dependent electrocatalysis. Annu Rep Prog Chem, Sect C 107:263–297CrossRef
    8.Wu B, Zheng N (2013) Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8(2):168–197CrossRef
    9.You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42(7):2880–2904CrossRef
    10.Sanchez-Sanchez CM, Solla-Gullon J, Montiel V (2013) Electrocatalysis at nanoparticles. In: Electrochemistry: volume 11—nanosystems electrochemistry, vol 11. The Royal Society of Chemistry., pp 34–70
    11.Steven EF, Kleijn SCSL, Marc T, Koper M, Unwin PR (2014) Electrochemistry of nanoparticles. Angew Chem Int Ed 53(14):3558–3586CrossRef
    12.Dai Y, Wang Y, Liu B, Yang Y (2015) Metallic nanocatalysis: an accelerating seamless integration with nanotechnology. Small 11(3):268–289CrossRef
    13.H-l L, Nosheen F, Wang X (2015) Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem Soc Rev 44(10):3056–3078CrossRef
    14.Wang Y-J, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115(9):3433–3467CrossRef
    15.Vidal-Iglesias FJ, Solla-Gullón J, Herrero E, Montiel V, Aldaz A, Feliu JM (2011) Evaluating the ozone cleaning treatment in shape-controlled Pt nanoparticles: evidences of atomic surface disordering. Electrochem Commun 13(5):502–505CrossRef
    16.Watanabe M, Sei H, Stonehart P (1989) The influence of platinum crystallite size on the electroreduction of oxygen. J Electroanal Chem 261(2B):375–387CrossRef
    17.Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surfaces. CRC Press, New YorkCrossRef
    18.Maillard F, Eikerling M, Cherstiouk OV, Schreier S, Savinova E, Stimming U (2004) Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss 125:357–377CrossRef
    19.Maillard F, Schreier S, Hanzlik M, Savinova ER, Weinkauf S, Stimming U (2005) Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys Chem Chem Phys 7(2):385–393CrossRef
    20.Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J Am Chem Soc 127(18):6819–6829CrossRef
    21.Maillard F, Savinova ER, Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599(2):221–232CrossRef
    22.Seidel YE, Schneider A, Jusys Z, Wickman B, Kasemo B, Behm RJ (2008) Mesoscopic mass transport effects in electrocatalytic processes. Faraday Discuss 140:167–184CrossRef
    23.Koper MTM (2009) Fuel cell catalysis: a surface science approach. electrocatalysis and electrochemistry. John Wiley & Sons, Hoboken, New JerseyCrossRef
    24.López-Cudero A, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2010) CO electrooxidation on carbon supported platinum nanoparticles: effect of aggregation. J Electroanal Chem 644(2):117–126CrossRef
    25.Nesselberger M, Roefzaad M, Fayçal Hamou R, Ulrich Biedermann P, Schweinberger FF, Kunz S, Schloegl K, Wiberg GKH, Ashton S, Heiz U, Mayrhofer KJJ, Arenz M (2013) The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat Mater 12(10):919–924CrossRef
    26.Yang H, Kumar S, Zou S (2013) Electroreduction of O2 on uniform arrays of Pt nanoparticles. J Electroanal Chem 688:180–188CrossRef
    27.Fabbri E, Taylor S, Rabis A, Levecque P, Conrad O, Kötz R, Schmidt TJ (2014) The effect of platinum nanoparticle distribution on oxygen electroreduction activity and selectivity. ChemCatChem 6(5):1410–1418CrossRef
    28.Chumillas S, Busó-Rogero C, Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM (2011) Size and diffusion effects on the oxidation of formic acid and ethanol on platinum nanoparticles. Electrochem Commun 13(11):1194–1197CrossRef
    29.Martinez-Rodriguez RA, Vidal-Iglesias FJ, Solla-Gullon J, Montiel V, Cabrera CR, Feliu JM (2014) Electrochemical study of the effect of adsorbates and precursors in the synthesis of well-defined platinum nanoparticles using water-in-oil microemulsion. Paper presented at the 2014 ECS and SMEQ Joint International Meeting, Cancun (Mexico)
    30.Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla-Gullon J, Cabrera CR, Feliu JM (2014) Synthesis of Pt nanoparticles in water-in-oil microemulsion: on the effect of HCl on their surface structure. J Am Chem Soc 136(4):1280–1283CrossRef
    31.Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla-Gullón J, Cabrera CR, Feliu JM (2014) Synthesis and electrocatalytic properties of H2SO4-induced (100) Pt nanoparticles prepared in water-in-oil microemulsion. ChemPhysChem 15(10):1997–2001CrossRef
    32.Solla-Gullón J, Rodríguez P, Herrero E, Aldaz A, Feliu JM (2008) Surface characterization of platinum electrodes. Phys Chem Chem Phys 10(10):1359–1373CrossRef
    33.Solla-Gullón J, Vidal-Iglesias FJ, López-Cudero A, Garnier E, Feliu JM, Aldaz A (2008) Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 10(25):3689–3698CrossRef
    34.Chen QS, Solla-Gullon J, Sun SG, Feliu JM (2010) The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: the role of anion adsorption in fundamental electrocatalysis. Electrochim Acta 55(27):7982–7994CrossRef
    35.Inaba M, Ando M, Hatanaka A, Nomoto A, Matsuzawa K, Tasaka A, Kinumoto T, Iriyama Y, Ogumi Z (2006) Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties. Electrochim Acta 52(4):1632–1638CrossRef
    36.Nakamura M, Hanioka Y, Ouchida W, Yamada M, Hoshi N (2009) Estimation of surface structure and carbon monoxide oxidation site of shape-controlled Pt nanoparticles. ChemPhysChem 10(15):2719–2724CrossRef
    37.Sanchez-Sanchez CM, Solla-Gullon J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132(16):5622–5624CrossRef
    38.Urchaga P, Baranton S, Napporn TW, Coutanceau C (2010) Selective syntheses and electrochemical characterization of platinum nanocubes and nanotetrahedrons/octahedrons. Electrocatalysis 1:3–6CrossRef
    39.Brimaud S, Jusys Z, Behm RJ (2011) Controlled surface structure for in situ ATR-FTIRS studies using preferentially shaped Pt nanocrystals. Electrocatalysis 2(2):69–74CrossRef
    40.Coutanceau C, Urchaga P, Brimaud S, Baranton S (2012) Colloidal syntheses of shape- and size-controlled Pt nanoparticles for electrocatalysis. Electrocatalysis 3(2):75–87CrossRef
    41.Gumeci C, Marathe A, Behrens RL, Chaudhuri J, Korzeniewski C (2014) Solvothermal synthesis and electrochemical characterization of shape-controlled Pt nanocrystals. J Phys Chem C 118(26):14433–14440CrossRef
    42.Brimaud S, Jusys Z, Behm RJ (2014) Shape-selected nanocrystals for in situ spectro-electrochemistry studies on structurally well defined surfaces under controlled electrolyte transport: a combined in situ ATR-FTIR/online DEMS investigation of CO electrooxidation on Pt. Beilstein J Nanotech 5:735–746CrossRef
    43.Aran-Ais RM, Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Feliu JM (2015) Electrochemical characterization of clean shape-controlled Pt nanoparticles prepared in presence of oleylamine/oleic acid. Electroanalysis 27:945–956CrossRef
    44.Urchaga P, Baranton S, Coutanceau C, Jerkiewicz G (2012) Electro-oxidation of CO chem on Pt nanosurfaces: solution of the peak multiplicity puzzle. Langmuir 28(7):3658–3663CrossRef
    45.Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM, Aldaz A (2006) CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles. Electrochem Commun 8(1):189–194CrossRef
    46.Brimaud S, Pronier S, Coutanceau C, Léger JM (2008) New findings on CO electrooxidation at platinum nanoparticle surfaces. Electrochem Commun 10(11):1703–1707CrossRef
    47.Urchaga P, Baranton S, Coutanceau C (2013) Changes in COchem oxidative stripping activity induced by reconstruction of Pt (1 1 1) and (1 0 0) surface nanodomains. Electrochim Acta 92:438–445CrossRef
    48.Coutanceau C, Lamy C, Urchaga P, Baranton S (2012) Platinum activity for CO electrooxidation: from single crystal surfaces to nanosurfaces and real fuel cell nanoparticles. Electrocatalysis 3(3):304–312CrossRef
    49.Chen D, Tao Q, Liao LW, Liu SX, Chen YX, Ye S (2011) Determining the active surface area for various platinum electrodes. Electrocatalysis 2:207–219CrossRef
    50.Mayrhofer KJJ, Arenz M, Blizanac BB, Stamenkovic V, Ross PN, Markovic NM (2005) CO surface electrochemistry on Pt-nanoparticles: a selective review. Electrochim Acta 50(25–26):5144–5154CrossRef
    51.Cherstiouk OV, Simonov PA, Savinova ER (2003) Model approach to evaluate particle size effects in electrocatalysis: preparation and properties of Pt nanoparticles supported on GC and HOPG. Electrochim Acta 48(25–26):3851–3860CrossRef
    52.Cherstiouk OV, Simonov PA, Zaikovskii VI, Savinova ER (2003) CO monolayer oxidation at Pt nanoparticles supported on glassy carbon electrodes. J Electroanal Chem 554:241–251CrossRef
    53.Lai SCS, Lebedeva NP, Housmans THM, Koper MTM (2007) Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes. Top Catal 46(3–4):320–333CrossRef
    54.Lebedeva NP, Koper MTM, Herrero E, Feliu JM, Van Santen RA (2000) CO oxidation on stepped Pt n (111) × (111) electrodes. J Electroanal Chem 487(1):37–44CrossRef
    55.Lebedeva NP, Rodes A, Feliu JM, Koper MTM, Van Santen RA (2002) Role of crystalline defects in electrocatalysis: CO adsorption and oxidation on stepped platinum electrodes as studied by in situ infrared spectroscopy. J Phys Chem B 106(38):9863–9872CrossRef
    56.Vidal-Iglesias FJ, Solla-Gullón J, Campina JM, Herrero E, Aldaz A, Feliu JM (2009) CO monolayer oxidation on stepped Pt (S) (n-1) (100) × (110) surfaces. Electrochim Acta 54(19):4459–4466CrossRef
    57.Farias MJS, Tanaka AA, Tremiliosi G, Feliu JM (2011) On the apparent lack of preferential site occupancy and electrooxidation of CO adsorbed at low coverage onto stepped platinum surfaces. Electrochem Commun 13(4):338–341CrossRef
    58.Farias MJS, Busó-Rogero C, Gisbert R, Herrero E, Feliu JM (2013) Influence of the CO adsorption environment on its reactivity with (111) terrace sites in stepped Pt electrodes under alkaline media. J Phys Chem C 118(4):1925–1934CrossRef
    59.Farias MJS, Herrero E, Feliu JM (2013) Site selectivity for CO adsorption and stripping on stepped and kinked platinum surfaces in alkaline medium. J Phys Chem C 117(6):2903–2913CrossRef
    60.García G, Koper MTM (2011) Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells. ChemPhysChem 12(11):2064–2072CrossRef
    61.Garcia G, Koper MTM (2009) Mechanism of electro-oxidation of carbon monoxide on stepped platinum electrodes in alkaline media: a chronoamperometric and kinetic modeling study. Phys Chem Chem Phys 11(48):11437–11446CrossRef
    62.Housmans THM, Hermse CGM, Koper MTM (2007) CO oxidation on stepped single crystal electrodes: a dynamic Monte Carlo study. J Electroanal Chem 607(1–2):69–82CrossRef
    63.Vidal-Iglesias FJ, Garcia-Araez N, Montiel V, Feliu JM, Aldaz A (2003) Selective electrocatalysis of ammonia oxidation on Pt (100) sites in alkaline medium. Electrochem Commun 5(1):22–26CrossRef
    64.Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P, Herrero E, Montiel V, Feliu JM, Aldaz A (2004) Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem Commun 6(10):1080–1084CrossRef
    65.Rosca V, Duca M, De Groot MT, Koper MTM (2009) Nitrogen cycle electrocatalysis. Chem Rev 109(6):2209–2244CrossRef
    66.Vidal-Iglesias FJ, Solla-Gullón J, Feliu JM, Baltruschat H, Aldaz A (2006) DEMS study of ammonia oxidation on platinum basal planes. J Electroanal Chem 588(2):331–338CrossRef
    67.Vidal-Iglesias FJ, Solla-Gullón J, Montiel V, Feliu JM, Aldaz A (2005) Ammonia selective oxidation on Pt (100) sites in an alkaline medium. J Phys Chem B 109(26):12914–12919CrossRef
    68.Vidal-Iglesias FJ (2005) Doctoral Thesis. Estudio de la electrooxidación de amoniaco en medio básico sobre platino: superficies bien definidas y nanopartículas. University of Alicante, Alicante (Spain)
    69.Rosca V, Koper MTM (2006) Electrocatalytic oxidation of ammonia on Pt (111) and Pt (100) surfaces. Phys Chem Chem Phys 8(21):2513–2524CrossRef
    70.Shao M (2013) Electrocatalysis in fuel cells: a non- and low- platinum approach. Springer, LondonCrossRef
    71.Feliu JM, Herrero E (2003) Formic acid oxidation. In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 2. John Wiley & Sons, Ltd, Chichester, pp 625–634
    72.Jiang K, Zhang HX, Zou S, Cai WB (2014) Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem Chem Phys 16(38):20360–20376CrossRef
    73.Cuesta A, Cabello G, Osawa M, Gutiérrez C (2012) Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal 2(5):728–738CrossRef
    74.Osawa M, Komatsu K, Samjeske G, Uchida T, Ikeshoji T, Cuesta A, Gutierrez C (2011) The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum. Angew Chem Int Ed 50(5):1159–1163CrossRef
    75.Cuesta A, Cabello G, Gutierrez C, Osawa M (2011) Adsorbed formate: the key intermediate in the oxidation of formic acid on platinum electrodes. Phys Chem Chem Phys 13(45):20091–20095CrossRef
    76.Chen YX, Heinen M, Jusys Z, Behm RJ (2006) Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode? Langmuir 22(25):10399–10408CrossRef
    77.Chen YX, Miki A, Ye S, Sakai H, Osawa M (2003) Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc 125(13):3680–3681CrossRef
    78.Grozovski V, Vidal-Iglesias FJ, Herrero E, Feliu JM (2011) Adsorption of formate and its role as intermediate in formic acid oxidation on platinum electrodes. ChemPhysChem 12(9):1641–1644CrossRef
    79.Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2014) The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: a mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry. Electrochim Acta 129:127–136CrossRef
    80.Brimaud S, Solla-Gullon J, Weber I, Feliu JM, Behm RJ (2014) Formic acid electrooxidation on noble-metal electrodes: role and mechanistic implications of pH, surface structure, and anion adsorption. ChemElectroChem 1(6):1075–1083CrossRef
    81.Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2013) Importance of acid–base equilibrium in electrocatalytic oxidation of formic acid on platinum. J Am Chem Soc 135(27):9991–9994CrossRef
    82.Haan JL, Masel RI (2009) The influence of solution pH on rates of an electrocatalytic reaction: formic acid electrooxidation on platinum and palladium. Electrochim Acta 54(16):4073–4078CrossRef
    83.Boronat-Gonzalez A, Herrero E, Feliu JM (2014) Fundamental aspects of HCOOH oxidation at platinum single crystal surfaces with basal orientations and modified by irreversibly adsorbed adatoms. J Solid State Electrochem 18(5):1181–1193CrossRef
    84.Koper MTM, Lai SCS, Herrero E (2009) Mechanisms of the oxidation of carbon monoxide and small organic molecules at metal electrodes. In: Koper MTM (ed) Fuel cell catalysis, a surface science approach. John Wiley & Sons, Inc, Hoboken, NJ, pp 159–208CrossRef
    85.Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735CrossRef
    86.Grozovski V, Solla-Gullon J, Climent V, Herrero E, Feliu JM (2010) Formic acid oxidation on shape-controlled pt nanoparticles studied by pulsed voltammetry. J Phys Chem C 114(32):13802–13812CrossRef
    87.Maciá MD, Herrero E, Feliu JM (2003) Formic acid oxidation on Bi-Pt (111) electrode in perchloric acid media. A kinetic study. J Electroanal Chem 554:25–34CrossRef
  • 作者单位:Francisco J. Vidal-Iglesias (1)
    Vicente Montiel (1)
    José Solla-Gullón (1)

    1. Instituto de Electroquímica, Universidad de Alicante Apartado 99, E–03080, Alicante, Spain
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
The influence of the metal loading (i.e. interparticle distance) of shape-controlled Pt nanoparticles on their electrocatalytic properties is evaluated for the first time. For this purpose, carbon-supported cubic Pt nanoparticles (~17 nm) with different metal loadings were prepared, characterized and electrochemically tested. To avoid differences in particle size and shape/surface structure of the Pt nanoparticles between samples, all samples used in this work were prepared from a single batch. The surface structure of the Pt nanoparticles was evaluated through the so-called hydrogen region and showed a preferential (100) orientation. Interestingly, the electroactive surface area of the samples, estimated both from the H or CO stripping processes, was directly proportional to the total Pt mass, independently of the metal loading. The CO stripping profile was also found to be unaffected by the metal loading. However, for ammonia and formic acid electrooxidation, the activity obtained was dependent on the metal loading. For ammonia oxidation, the optimal loading was found to be about 20–30 wt%. Nevertheless, this trend may be altered by different factors including (i) active surface area, (ii) metal loading and (ii) thickness of the catalytic layer. For formic acid electrooxidation, the results obtained showed a clear decrease of the activity for increasing metal loadings which is explained in terms of formic acid consumption on the top layers of the catalyst.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700