用户名: 密码: 验证码:
Arbitrary oscillatory Stokes flow past a porous sphere using Brinkman model
详细信息    查看全文
  • 作者:Jai Prakash (1) jp@maths.iitkgp.ernet.in
    G. P. Raja Sekhar (1) rajas@maths.iitkgp.ernet.in
  • 关键词:Brinkman equation – Faxén’s law – Oscillatory flow – Stokes flow
  • 刊名:Meccanica
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:47
  • 期:5
  • 页码:1079-1095
  • 全文大小:829.0 KB
  • 参考文献:1. Higdon JJL, Kojima M (1981) On the calculation of Stokes flow past porous particles. Int J Multiph Flow 7(6):719–727
    2. Yu Q, Kaloni PN (1988) A cartesian-tensor solution of the Brinkman equation. J Eng Math 22:177–188
    3. Keh HJ, Chen SH (1996) The motion of a slip spherical particle in an arbitrary Stokes flow. Eur J Mech B, Fluids 15:791–807
    4. Hetsroni G, Haber S (1970) The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol Acta 9:488–496
    5. Hetsroni G, Wacholder E, Haber S (1971) The hydrodynamic resistance of a fluid sphere submerged in Stokes flows. Z Angew Math Mech 51:45–50
    6. Rallison JM (1978) Note on the Faxén relations for a particle in Stokes flow. J Fluid Mech 88(3):529–533 <Occurrence Type="Bibcode"><Handle>1978JFM....88..529R</Handle></Occurrence>
    7. Masliyah JH, Neale G, Malysa K, van de Ven TGM (1987) Creeping flow over a composite sphere: solid core with porous shell. Chem Eng Sci 42:245–253
    8. Chapman AM, Higdon JJL (1992) Oscillatory Stokes flow in periodic porous media. Phys Fluids A, Fluid Dyn 4:2099–2116 <Occurrence Type="Bibcode"><Handle>1992PhFl....4.2099C</Handle></Occurrence>
    9. Looker JR, Carnie SL (2004) The hydrodynamics of an oscillating porous sphere. Phys Fluids 16:62–72 <Occurrence Type="Bibcode"><Handle>2004PhFl...16...62L</Handle></Occurrence>
    10. Poliak B (2000) Modelling electrokinetic behaviour and forces in colloidal systems. PhD thesis, Department of Mathematics and Statistics, The University of Melbourne
    11. Curcio S (2005) A theoretical and experimental analysis of membrane bioreactors behavior in unsteady—state conditions. Excerpt from the proc COMSOL multiphysics user’s conference, Stockholm
    12. Dragon C, Grotberg J (1991) Oscillatory flow and mass-transport in a flexible tube. J Fluid Mech 231:135–155 <Occurrence Type="Bibcode"><Handle>1991JFM...231..135D</Handle></Occurrence>
    13. Dursting J, Sheridan J, Hourigan K (2006) A fluid dynamic approach to bioreactor design for cell and tissue culture. Biotechnol Bioeng 94:1197–1208
    14. Prakash J, Raja Sekhar GP, De S, B?hm M (2010) A criterion to avoid starvation zones for convection–diffusion–reaction problem inside a porous biological pellet under oscillatory flow. Int J Eng Sci 48:693–707
    15. Prakash J, Raja Sekhar GP, De S (2011) Dirichlet problem for convection–diffusion–reaction inside a permeable cylindrical porous pellet. Int J Eng Sci 49:606–624
    16. Ni X, Mackley MR, Harvey AP, Stonestreet P, Baird MHI, Rama Rao NV (2003) Mixing through oscillations and pulsations—a guide to achieving process enhancements in the chemical and process industries. Chem Eng Res Des 81:373–383
    17. Crittenden BD, Lau A, Brinkmann T, Field RW (2005) Oscillatory flow and axial dispersion in packed beds of spheres. Chem Eng Sci 60:111–122
    18. Umnova O, Attenborough K, Li KM (2000) Cell model calculations of dynamic drag parameters in packings of spheres. J Acoust Soc Am 107:3113–3119 <Occurrence Type="Bibcode"><Handle>2000ASAJ..107.3113U</Handle></Occurrence>
    19. Vainshtein P, Shapiro M (2009) Forces on a porous particle in an oscillating flow. J Colloid Interface Sci 330:149–155
    20. Padmavathi BS, Amaranath T, Nigam SD (1993) Stokes flow past a porous sphere using Brinkman’s model. Z Angew Math Phys 44:929–939
    21. Raja Sekhar GP, Padmavathi BS, Amaranath T (1997) Complete general solution of the Brinkman equation. Z Angew Math Mech 77:555–556
    22. Saffman PG (1971) On the boundary condition at the surface of a porous medium. Stud Appl Math 50:93–101
    23. Raja Sekhar GP, Amaranath T (1996) Stokes flow past a porous sphere with an impermeable core. Mech Res Commun 23:449–460
    24. Neale G, Epstein N (1973) Creeping flow relative to permeable spheres. Chem Eng Sci 28:1864–1875
    25. Davis RH, Stone HA (1993) Flow through beds of porous particles. Chem Eng Sci 23:3993–4005
    26. Chen SB, Ye X (2000) Faxen’s laws of a composite sphere under creeping flow conditions. J Colloid Interface Sci 221:50–57
    27. Filippov AN, Vasin SI, Starov VM (2006) Mathematical modeling of the hydrodynamic permeability of a membrane built up from porous particles with a permeable shell. Colloids Surf A 282–283:272–278
    28. Vasin SI, Filippov AN, Starov VM (2008) Hydrodynamic permeability of membranes built up by particles covered by porous shells: Cell models. Adv Colloid Interface Sci 139:83–96
    29. Cichocki B, Felderhof BU (2009) Hydrodynamic friction coefficients of coated spherical particles. J Chem Phys 130:164712 <Occurrence Type="Bibcode"><Handle>2009JChPh.130p4712C</Handle></Occurrence>
    30. Abade GC, Cichocki B, Ekiel-Je?ewska ML, N?gele G, Wajnryb E (2010) Short-time dynamics of permeable particles in concentrated suspensions. J Chem Phys 132:014503 <Occurrence Type="Bibcode"><Handle>2010JChPh.132a4503A</Handle></Occurrence>
    31. Nield DA (2009) The Beavers–Joseph boundary condition and related matters: A historical and critical note. Transp Porous Media 78:537–540
    32. Ochoa-Tapia JA, Whitaker S (1995) Momentum transfer at the boundary between a porous medium and a homogeneous fluid-Theoretical development. Int J Heat Mass Transf 38:2635–2646
    33. Ochoa-Tapia JA, Whitaker S (1995) Momentum transfer at the boundary between a porous medium and a homogeneous fluid-Comparison with experiment. Int J Heat Mass Transf 38:2647–2655
    34. Masliyah JH, Neale G, Malysa K, Van De Ven TGM (1987) Creeping flow over a composite sphere: solid core with porous shell. Chem Eng Sci 42:245–253
    35. Raja Sekhar GP (1997) Complete general solutions of Stokes and Brinkman equations and their applications. PhD thesis, University of Hyderabad, India
    36. Pozrikidis C (1992) Boundary integral and singularity methods for linearized flow. Cambridge Univ Press, Cambridge
    37. Kim S, Lu SY (1987) The functional similarity between Faxén relations and singularity solutions for fluid-fluid, fluid-solid and solid-solid dispersions. Int J Multiph Flow 13:837–844
    38. Kohr M, Pop I (2004) Viscous incompressible flow for low Reynolds numbers. WIT Press, Southampton
    39. Pozrikidis C (1989) A singularity method for unsteady linearized flow. Phys Fluids A, Fluid Dyn 1:1508–1520 <Occurrence Type="Bibcode"><Handle>1989PhFl....1.1508P</Handle></Occurrence>
    40. Kim S, Karrila SJ (1991) Microhydrodynamics: Principles and selected applications. Butterworth-Heinemann, Boston
    41. Howells ID (1974) Drag due to the motion of a newtonian fluid through a sparse random array of small fixed rigid objects. J Fluid Mech 64:449–475 <Occurrence Type="Bibcode"><Handle>1974JFM....64..449H</Handle></Occurrence>
    42. O’Neill ME, Bhatt BS (1991) Slow motion of a solid sphere in the presence of a naturally permeable surface. Q J Mech Appl Math 44:91–104
    43. Feng Z-G, Michaelides EE (1998) Motion of a permeable sphere at finite but small Reynolds numbers. Phys Fluids 10:1375–1383 <Occurrence Type="Bibcode"><Handle>1998PhFl...10.1375F</Handle></Occurrence>
    44. Roux CL (2009) Flow of fluids with pressure dependent viscosities in an orthogonal rheometer subject to slip boundary conditions. Meccanica 44:71–83
    45. Lok YY, Pop I, Ingham DB (2010) Oblique stagnation slip flow of a micropolar fluid. Meccanica 45:187–198
    46. Prakash J, Raja Sekhar GP, Kohr M (2011) Stokes flow of an assemblage of porous particles: stress jump condition. Z Angew Math Phys. doi:10.1007/s00033-011-0123-6
  • 作者单位:1. Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 India
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Civil Engineering
    Automotive and Aerospace Engineering and Traffic
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-9648
文摘
The present paper deals with the hydrodynamics of a porous sphere placed in an arbitrary oscillatory Stokes flow. Unsteady Stokes equation is used for the flow outside the porous sphere and Brinkman equation is used for the flow inside the porous sphere. Corresponding Faxén’s law for drag and torque is derived and compared with few existing results in some special cases. Examples like uniform flow, oscillatory shear flow and oscillating Stokeslet are discussed. Also, translational oscillation of a weakly permeable sphere is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700