Composition and Ceramic Properties of Carbonate-Bearing: Illitic Clays from North-Eastern Tunisia
详细信息    查看全文
  • 作者:Salah Mahmoudi (1)
    Ezzeddine Srasra (2)
    Fouad Zargouni (3)
  • 关键词:Illitic clays ; Ceramic properties ; Ceramic production
  • 刊名:Arabian Journal for Science and Engineering
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:39
  • 期:7
  • 页码:5729-5737
  • 全文大小:811 KB
  • 参考文献:1. Ben M’Barek, M.; Srasra, E.; Zargouni, F.: Characterization of Paleocene clays in the North West of Tunisia and their use in the field of ceramics. Afr. Geosci. Rev. 9, 107-17 (2002) (in French)
    2. El Hechi, A.: Mineralogical and physico-chemical study of the Upper Cretaceous—Paleogene clays of Grombalia, Zaghouan, and Enfidha. Thesis, Faculty of Sciences of Tunisia, pp. 205 (2004) (in French)
    3. Mahmoudi, S.; Srasra, E.; Zargouni, F.: The use of Tunisian Barremian clay in the traditional ceramic industry: optimization of ceramic properties. Appl. Clay Sci. 42, 125-29 (2008) CrossRef
    4. Mahmoudi, S.; Srasra, E.; Zargouni, F.: Firing behaviour of the lower cretaceous clays of Tunisia. J. Afr. Earth Sci. 58, 235-41 (2010) CrossRef
    5. Elkhazri, A.; Razgah, S.; Abdallah, H.; Ben Haj Ali, N.: The Barremo-Aptian anoxic event “OAE 1a-in north eastern Tunisia: interest foraminifera. Rev. Paleobiol. 28, 93-30 (2009) (in French)
    6. Turki, M.M.: Polykinematic and sediment control associated with the Zaghouan-Nabhana fautl. In: Review of Earth Sciences. Edition of the National Institute of Scientific and Technical Research of Tunis, Tunisia, p. 252 (in French) (1988)
    7. Grim, R.E.: Applied Clay Mineralogy, McGraw-Hill, New York, p. 422 (1962)
    8. Srodon, J.: X-ray diffraction of randomly interstratified illite smectite in mixtures with discrete. Clay Miner. 16, 297-04 (1981) CrossRef
    9. Proust, C.; Jullien, A.; Forestier, L.: Determination of Atterberg limits by dynamic gravimetry. Comptes Rendus Geosci. 336, 1233-238 (2004) (in French)
    10. Modesto, C.; Bernardin, A.M.: Determination of clay plasticity: indentation method versus Pfefferkorn method. Appl. Clay Sci. 40, 15-9 (2008) CrossRef
    11. Carretero, M.I.; Dondi, M.; Fabbri, B.; Raimondo, M.: The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic–chloritic clays. Appl. Clay Sci. 20, 301-06 (2002) CrossRef
    12. Ferrari, S.; Gualteri, A.F.: The use of illitic the production stoneware tile ceramics. Appl. Clay Sci. 32, 73-1 (2006) CrossRef
    13. Sedmale, G.; Sperberga, I.; Sedmalis, U.; Valancius, Z.: Formation of high-temperature crystalline phases in ceramic from illite clay and dolomite. J. Eur. Ceram. Soc. 26, 3351-355 (2006) CrossRef
    14. Wattanasiriwech, D.; Srijan, K.; Wattanasiriwech, S.: Vitrification of illitic clay from Malaysia. Appl. Clay Sci. 43, 57-2 (2009) CrossRef
    15. Fiori, C.; Fabbri, B.; Donati, F.; Venturi, I.: Mineralogical composition of the clay bodies used in the Italian tile industry. Appl. Clay Sci. 4, 461-73 (1989) CrossRef
    16. Bain, A.J.: Composition and properties of clay used in various fields of ceramics. Part II. Ceram. Forum Int. 63, 44-4 (1987)
    17. Kreimeyer, R.: Some notes on the firing colour of clay bricks. Appl. Clay Sci. 2, 175-83 (1987) CrossRef
    18. Baccour, H.; Medhioub, M.; Jamoussi, F.; Mhiri, T.; Daoud, A.: Mineralogical evaluation and industrial applications of the Triassic clay deposits, Southern Tunisia. Mater. Charact. 59, 1613-622 (2008) CrossRef
    19. Baccour, H.; Medhioub, M.; Jamoussi, F.; Mhiri, T.: Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. J. Mater.Process. Technol. 209, 2812-817 (2009) CrossRef
    20. Hajjaji, W.; Moussi, B.; Hachani, M.; Medhioub, M.; Lopez-Galindo, A.; Rocha, F.; Labrincha, J.A.; Jamoussi, F.: The potential use of Tithonian–Barremian detrital deposits from central Tunisia as raw materials for ceramic tiles and pigments. Appl. Clay Sci. 48, 552-60 (2010) CrossRef
    21. Shepard, F.P.: Nomenclature based on sand–silt–clay ratios. J. Sediment. Petrol. 24, 151-58 (1954)
    22. Mc Manus, J.: Grain size distribution and interpretation. In: Tucker, M.E. (ed.) Techniques in Sedimentology. Blackwell, Oxford, pp. 63-5 (1988)
    23. Winkler, H.G.F.: Bedeutung der Korngrossenverteilungund des Mineral-bestandes von Tonen fiirdie Herstellung grobkerarnischer Erzeugnisse. Ber. DKG 31, 337-43 (1954)
    24. Holtz, X.; Kovacs, X.: Kansas geotechnical survey. The relationship between geology and landslide hazards of Atchison. Kansas and Vicinity. Curr. Res. Earth Sci. 3, 244 (1981)
    25. Van der Merwe, D.H.: Prediction of heave from the plasticity index and percentage of clay fraction of soils. Trans. S. Afr. Inst. Civil Eng. 6, 103-07 (1964)
    26. Bain, J.A.; Highly, D.E.: Regional appraisal of clay resources: challenge to the clay mineralogist. In: Mortland, M.M.; Faxmer, V.C. (Eds.) Proceedings of the International Clay Conference, Elsevier, Amsterdam, pp. 437-46 (1978)
    27. Baran, B.; Erturk, T.; Sarikaya, Y.; Alembaroglu, T.: Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl. Clay Sci. 20, 53-3 (2001) CrossRef
    28. Kara, A.; Stevens, R.:Characterization of biscuit fired bone China body microstructure. Part I: XRD and SEM of crystalline phases. J. Eur. Ceram. Soc. 22, 731-36 (2002)
    29. Milheiro, F.A.C.; Freire, M.N.; Silva, A.G.P.; Holanda, J.N.F.: Densification behavior of a red firing Brazilian kaolinitic clay. Ceram. Int. 31, 757-63 (2005) CrossRef
    30. Martin-Marques, J.; Rincon, J.Ma.; Romero, M.: Effect of firig temperature on the sintering of porcelain stoneware tiles. Ceram. Int. 34, 1867-873 (2008) CrossRef
    31. Alcantara, A.C.S.; Beltr?o, M.S.S.; Oliveira, H.A.; Gimenez, I.F.; Barreto, L.S.: Characterization of ceramic tiles prepared from two clays from Sergipe—Brazil. Appl. Clay Sci. 39, 160-65 (2008) CrossRef
    32. Assal, H.H.; El-Didamony, H.; Ramez, M.; Mossalamy, F.H.: The role of lime inclusions on the properties of fired clay articles. Ind. Ceram. 19, 82-2 (1999)
    33. Cizeron, G.: Dilatometric analysis. Ceram. Ind. 795, 405-08 (1985)
    34. Fabri, B.; Fiori, C.: Clays and complementary raw materials for stoneware tiles. Miner. Petrogr. Acta 29, 535-45 (1985)
    35. Hollerl, N.; Venturi, V.; Gatti, F.: Calcium carbonate in extruded products. Ceram. World 2, 34-9 (1996)
    36. Parras, J.; Sanchez-Jimenez, C.; Rodas, M.; Luque, F.G.: Ceramic application of Middle Ordovician shales from central Spain. Appl. Clay Sci. 11, 25-1 (1996) CrossRef
    37. Gallala, W.; Gaied, M.E.M.: Montacer: detrital mode, mineralogy and geochemistry of the Sidi A?ch Formation (Early Cretaceous) in central and southwestern Tunisia: implications for provenance, tectonic setting and paleoenvironment. J. Afr. Earth Sci. 53, 159-70 (2009)
    38. Darweesh, H.: Building materials from siliceous clay and low grade dolomite rocks. Ceram. Int. 27, 45-0 (2001) CrossRef
    39. Jordán, M.M.; Almendro, M.B.; Romero, M.; Rincón, J.M.: Application of sewage sludge in the manufacturing of ceramic tile bodies. Appl. Clay Sci. 30, 219-24 (2006) CrossRef
    40. Sanchez Soto, P.J.;D?az-Hernandez, J.L.; Raigon-Pichardo, M.; Ru?z-Conde, A.; Garc?a-Ramos, G.: Ceramic properties of a Spanish clay containing illite, chlorite and quartz. Br. Ceram. Trans. 93, 196-01 (1994)
  • 作者单位:Salah Mahmoudi (1)
    Ezzeddine Srasra (2)
    Fouad Zargouni (3)

    1. Department of Earth Sciences, Faculty of Sciences, Gabes University, Zrig, 6072, Gabes, Tunisia
    2. Materials Center, Technopolis of Borj Cedria, BP 95, 2050, Hammam Lif, Tunisia
    3. Department of Geology, Faculty of Sciences, Tunis University, Belvédère, 1060, Tunis, Tunisia
文摘
The Aptian clays of Jebel Ressas (north-east of Tunisia) have been studied for their use in ceramic industry. At first, mineralogical, chemical, physical, and thermal analyses of these clays are given. Indeed, illite is the main mineral (60-5 wt%) but other minerals; quartz, kaolinite, interstratified illite/smectite, calcite and feldspar, are present in small quantities. Next, this study reveals that the average amounts of silica and potassium are 51.57 and 3.35 wt%, respectively. The percentage of potassium is also quite high, suggesting the presence of illite. The amount of alumina is in average of 19.01 wt%. The contents of lime and iron vary between 5 and 8 wt%. The grain size data indicate a silt-dominated assemblage. The plasticity test shows a medium value (PI=?16-0 wt%). The firing shrinkage and the expansion are limited. The absence of expansible minerals in these clays explains why the plasticity and the linear shrinkage are limited. Finally, two mixtures M1 and M2 prepared from these clays show that ceramic properties respect the norm and the industrial tests confirm that these clays could be used in manufacturing of bricks and earthenware tiles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700