Comparing polyethersulfone and polyurethane-immobilized cells of Comamonas testosteroni QYY in treatment of an accidental dye wastewater
详细信息    查看全文
文摘
Well-channeled porous polyethersulfone(PES) beads were synthesized and used for the immobilization of Comamonas testosteroni QYY cells for an aerobic reactor to remove quinoline, phenol, and other refractory com-pounds in accidentally-released dye wastewater supplemented with domestic wastewater. The pore size in PES beads mainly depended on the dripping time through the water vapor cylinder. When the cylinder was 2.5 m in length, the pore size in the obtained beads was enlarged to 3 μm, which provided an ideal surface for cells to pass through and grow inside. The reactor with the immobilized C. testosteroni QYY on PES beads resisted organic loading shock and enhanced total organic carbon(TOC) removal, which had 100% removal efficiencies of both quinoline and phenol when the volume ratio of the accidental wastewater to domestic wastewater was increased from 1:2 to 1:1, as compared with the 100% and 34.7% removal efficiencies by the reactor with immobilized C. testosteroni QYY on polyurethane(PU) cube or the 82% and 2.4% removal efficiencies by the reactor with only the suspended C. testosteroni QYY cells, respectively. The PES beads had a specific surface area of 1843 cm2/cm3, which had immobilized (0.024±0.003) g of C. testosteroni QYY cell dry mass/cm3, compared with the specific surface area of 564 cm2/cm3 of the PU cube with (0.018±0.002) g of cell dry mass/cm3. The kinetic study revealed that the quinoline and phenol degradation followed zero-order reactions for all the three reactors. The PES reactor demonstrated the highest quinoline and phenol removal efficiencies. The immobilized C. testosteroni QYY on the low-cost inert PES beads demonstrated good shock resistance and was able to completely remove the toxic compounds, including phenyl carbamate, 2-nitrotoluene, and dioctyl phthalate. Therefore, the beads were ideal for large-scale accidental wastewater treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700