Incomplete Mixing in the Fate and Transport of Arsenic at a River Affected by Acid Drainage
详细信息    查看全文
  • 作者:Paula Guerra ; Christian Gonzalez ; Cristian Escauriaza…
  • 关键词:Aluminum ; Arsenic ; Acid drainage ; Confluence ; Iron ; Particle size ; Suspended solids ; Turbidity
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:227
  • 期:3
  • 全文大小:2,415 KB
  • 参考文献:Adra, A., et al. (2014). Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage. Environmental Science & Technology. doi:10.​1021/​es4020234 .
    Arias, M., et al. (2008). Sorption behaviour of arsenic by iron and aluminium-oxides-coated quartz particles. Fresenius Environmental Bulletin, 17(12A), 2122–2125. Available at: <Go to ISI>://000264011200019.
    Asta, M. P., et al. (2010). Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian pyritic belt, SW Spain): the role of iron precipitates. Chemical Geology, 271(1–2), 1–12. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S000925410900472​0 . Accessed 11 Dec 2015.CrossRef
    Asta, M. P., et al. (2015). Major hydrogeochemical processes in an acid mine drainage affected estuary. Marine Pollution Bulletin, 91(1), 295–305. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S0025326X1400776​0 . Accessed 27 March 2015.CrossRef
    Balistrieri, L. S., Box, S. E., & Tonkin, J. W. (2003). Modeling precipitation and sorption of elements during mixing of river water and porewater in the Coeur d’Alene river basin. Environmental Science & Technology, 37(20), 4694–4701. doi:10.​1021/​es0303283 .CrossRef
    Balistrieri, L., et al. (2007). Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth copper mine, Vermont, USA. Applied Geochemistry, 22(5), 930–952. Available at: <Go to ISI>://WOS:000247460600005.CrossRef
    Best, J. L. (1988). Sediment transport and bed morphology at river channel confluences. Sedimentology, 35(3), 481–498. doi:10.​1111/​j.​1365-3091.​1988.​tb00999.​x/​abstract;jsessionid=​C5767B4E7D8C38D6​78FF63CC0553E4EA​.​d02t01 .CrossRef
    Biron, P. M., Ramamurthy, A. S., & Han, S. (2004). Three-dimensional numerical modeling of mixing at river confluences. Journal of Hydraulic Engineering, 130(3), 243–253. doi:10.​1061/​(ASCE)0733-9429(2004)130:​3(243) .CrossRef
    Bouchez, J., et al. (2011). Turbulent mixing in the amazon river: the isotopic memory of confluences. Earth and Planetary Science Letters, 311(3–4), 448. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S0012821X1100569​3 .CrossRef
    Buffle, J. (2006). The key role of environmental colloids/nanoparticles for the sustainability of life. Environmental Chemistry, 3(3), 155–158.CrossRef
    Bugueño, M. P., et al. (2014). Differential arsenic binding in the sediments of two sites in Chile’s lower Loa river basin. Science of the Total Environment, 466–467, 387–396. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S004896971300766​3 .CrossRef
    Candeias, C., et al. (2015). Water–rock interaction and geochemical processes in surface waters influenced by tailings impoundments: impact and threats to the ecosystems and human health in rural communities (panasqueira mine, central Portugal). Water, Air, & Soil Pollution, 226(2), 1–30. doi:10.​1007/​s11270-014-2255-8 .CrossRef
    Canovas, C. R., et al. (2007). Hydrogeochemical characteristics of the Tinto and odiel rivers (SW Spain). Factors controlling metal contents. Science of the Total Environment, 373(1), 363. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S004896970600901​6 .CrossRef
    Carrero, S., et al. (2015). The potential role of aluminium hydroxysulphates in the removal of contaminants in acid mine drainage. Chemical Geology, 417, 414–423. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S000925411530067​X Accessed 15 Dec 2015.CrossRef
    Contreras, M. T., et al. (2015). Potential accumulation of contaminated sediments in a reservoir of a high-Andean watershed: morphodynamic connections with geochemical processes. Water Resources Research, 51(5), 3181–3192. doi:10.​1002/​2014WR016130 .CrossRef
    Davies, E. J., et al. (2012). LISST-100 response to large particles. Marine Geology, 307–310, 117–122. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S002532271200081​3 Accessed 9 Sep 2015.CrossRef
    De Vitre, R., Belzile, N., & Tessier, A. (1991). Speciation and adsorption of arsenic on diagenetic iron oxyhydroxides. Limnology and Oceanography, 36(7), 1480–1485. Available at: http://​www.​jstor.​org/​stable/​2837656 .CrossRef
    Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals:  implications for arsenic mobility. Environmental Science & Technology, 37(18), 4182. doi:10.​1021/​es030309t .CrossRef
    Duan, J., & Gregory, J. (2003). Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100-102, 475–502. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S000186860200067​2 .CrossRef
    Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: hydrous ferric oxide. New York: Wiley.
    EPA, 2007. 3051A - Microwave Assisted Acid Digestion of Aqueous Samples and Extracts U. S. E. P. Agency, ed. Wastes - Hazardous Waste - Test Methods - 3000 Series Methods. Available at: http://​www.​epa.​gov/​osw/​hazard/​testmethods/​sw846/​online/​3_​series.​htm .
    Filipek, L. H., Nordstrom, D. K., & Ficklin, W. H. (1987). Interaction of acid mine drainage with waters and sediments of west squaw creek in the west Shasta mining district, California. Environmental Science & Technology, 21(4), 388. doi:10.​1021/​es00158a009 .CrossRef
    Jarvis, P., et al. (2005). A review of floc strength and breakage. Water Research, 39(14), 3121–3137. Available at: http://​www.​sciencedirect.​com/​science/​article/​B6V73-4GJM3GM-6/​2/​c7e96d8e5c90cd55​f571d99ad49d97d3​ .CrossRef
    Keon, N. E., et al. (2001). Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science & Technology, 35(13), 2778–2784. Available at: <Go to ISI>://000169600100041.CrossRef
    Kim, J. J., & Kim, S. J. (2003). Environmental, mineralogical, and genetic characterization of ochreous and white precipitates from acid mine drainages in Taebaeg, Korea. Environmental Science & Technology, 37(10), 2120–2126. doi:10.​1021/​es026353a .CrossRef
    Kimball, B. A., et al. (2002). Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA. Applied Geochemistry, 17(9), 1183–1207. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S088329270200017​3 . Accessed 10 July 2015.CrossRef
    Kvech, S., & Edwards, M. (2002). Solubility controls on aluminum in drinking water at relatively low and high pH. Water Research, 36(17), 4356–4368. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S004313540200137​9 .CrossRef
    Laraque, A., Guyot, J. L., & Filizola, N. (2009). Mixing processes in the Amazon River at the confluences of the negro and Solimões Rivers, Encontro das Águas, Manaus, Brazil. Hydrological Processes, 23(22), 3131. doi:10.​1002/​hyp.​7388 .CrossRef
    Leiva, E. D., et al. (2014). Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Science of the Total Environment, 466–467, 490. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S004896971300777​8 .CrossRef
    Liao, B. Q., et al. (2006). Effect of solids retention time on structure and characteristics of sludge flocs in sequencing batch reactors. Water Research, 40(13), 2583–2591. Available at: <Go to ISI>://000239469400014.CrossRef
    McKnight, D. M., et al. (1992). Sorption of dissolved organic carbon by hydrous aluminium and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit County, Colorado. Environmental Science & Technology, 26(7), 1388–1396.CrossRef
    Meng, X., et al. (2002). Combined effects of anions on arsenic removal by iron hydroxides. Toxicology Letters, 133(1), 103–111. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S037842740200080​2 .CrossRef
    Mines, R., 2014. Environmental Engineering: Principles and practice First. J. W. & Sons, ed., Chichester: Wiley Blackwell.
    Nordstrom, D. K. (2011). Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry, 26(11), 1777–1791. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S088329271100313​1 .CrossRef
    Osawa, T., et al. (2011). The role of river confluences and meanderings in preserving local hot spots for threatened plant species in riparian ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 21(4), 358. doi:10.​1002/​aqc.​1194 .CrossRef
    Parkhurst, D. L. & Appelo, C. A. J. (1999). User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations.
    Root, R. A., et al. (2007). Arsenic sequestration by sorption processes in high-iron sediments. Geochimica et Cosmochimica Acta, 71(23), 5782–5803. Available at: <Go to ISI>://000251366800016.CrossRef
    Ruiz Cánovas, C., Olías, M., & Nieto, J. (2013). Metal(loid) attenuation processes in an extremely acidic river: the Rio Tinto (SW Spain). Water, Air, & Soil Pollution, 225(1), 1–16. doi:10.​1007/​s11270-013-1795-7 .
    Russel, M. A., Walling, D. E. & Hodgkinson, R. A. (2000). Appraisal of a simple sampling device for collecting time-integrated fluvial suspended sediment samples. In: The Role of Erosion and Sediment Transport in Nutrient and Contaminant Transfer. Waterloo: IAHS.
    Sánchez-España, J., et al. (2005). The impact of acid mine drainage on the water quality of the odiel river (Huelva, Spain): evolution of precipitate mineralogy and aqueous geochemistry along the concepción-tintillo segment. Water, Air, and Soil Pollution, 173, 121–149.CrossRef
    Sánchez-España, J., et al. (2006). The impact of acid mine drainage on the water quality of the odiel river (Huelva, Spain): evolution of precipitate mineralogy and aqueous geochemistry along the concepción-tintillo segment. Water, Air, and Soil Pollution, 173(1–4), 121–149. doi:10.​1007/​s11270-005-9033-6 .CrossRef
    Sánchez-España, J., Yusta, I., & Diez-Ercilla, M. (2011). Schwertmannite and hydrobasaluminite: a re-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes. Applied Geochemistry, 26(9–10), 1752–1774. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S088329271100331​3 . Accessed 7 July 2015.CrossRef
    Sarmiento, A. M., et al. (2009). Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel river Basin (SW Spain). Applied Geochemistry, 24(4), 697–714. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S088329270800459​9 .CrossRef
    Schemel, L. E., Kimball, B. A., & Bencala, K. E. (2000). Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado. Applied Geochemistry, 15(7), 1003–1018. Available at: http://​www.​sciencedirect.​com/​science/​article/​pii/​S088329279900104​3 . Accessed 10 Feb 2015.CrossRef
    Schemel, L. E., et al. (2006). Multiple injected and natural conservative tracers quantify mixing in a stream confluence affected by acid mine drainage near Silverton, Colorado. Hydrological Processes, 20(13), 2727–2743. doi:10.​1002/​hyp.​6081 .CrossRef
    Schemel, L. E., et al. (2007). Formation of mixed Al-Fe colloidal sorbent and dissolved-colloidal partitioning of Cu and Zn in the Cement Creek - Animas River Confluence, Silverton, Colorado. Applied Geochemistry, 22(7), 1467–1484. Available at: http://​www.​sciencedirect.​com/​science/​article/​B6VDG-4N9P4KD-6/​2/​1d70cc969cf9c4bc​86af0449897b95a3​ .CrossRef
    Theobald Jr, P. K., Lakin, H. W. & Hawkins, D. B. (1963). The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado. Geochimica et Cosmochimica Acta, 27(2), pp.121–122, IN1–IN2, 123–132. Available at: http://​www.​sciencedirect.​com/​science/​article/​B6V66-48C8J2K-NS/​2/​423a52269b3e3938​125a97b0d4884a0e​ .
    Tonkin, J. W., Balistrieri, L. S., & Murray, J. W. (2002). Modeling metal removal onto natural particles formed during mixing of acid rock drainage with ambient surface water. Environmental Science & Technology, 36(3), 484–492. Available at: <Go to ISI>://000173626900042.CrossRef
    Yukselen, M. A., & Gregory, J. (2004). The effect of rapid mixing on the break-up and re-formation of flocs. Journal of Chemical Technology & Biotechnology, 79(7), 782–788. doi:10.​1002/​jctb.​1056 .CrossRef
  • 作者单位:Paula Guerra (1) (2)
    Christian Gonzalez (1)
    Cristian Escauriaza (1) (3)
    Gonzalo Pizarro (1) (4)
    Pablo Pasten (1) (4)

    1. Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
    2. Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, San Joaquín, Santiago, Chile
    3. Centro Nacional de Investigación para la Gestión Integrada de Desastres Naturales, CIGIDEN, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
    4. Centro de Desarrollo Urbano Sustentable, CEDEUS, Pontificia Universidad Católica de Chile, El Comendador 1916, Providencia, Santiago, Chile
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Acid drainage is an environmental liability that impacts the quality of surface waters. However, the precipitation of iron and aluminum oxy/hydroxides decreases the concentration of dissolved toxic metals (such as arsenic) in rivers that receive acid drainage. Additionally, hydrodynamic factors (e.g., flow velocity fields and mixing ratios) control incomplete chemical mixing. Despite the occurrence of incomplete mixing in streams, its role on the fate and transport of contaminants has not been explored. We analyzed these processes at the Azufre River (pH 2)–Caracarani River (pH 8.6) confluence, northern Chile. We performed cross-sectional measurements of pH, turbidity, and particle size distributions and sampled water and suspended solids to analyze iron, aluminum, and arsenic. To complement field measurements, mixing experiments and geochemical modeling were performed. We found that there were distinct mixing zones on the field that promoted the precipitation of iron phases (pH >3) or the precipitation of iron and aluminum phases (pH ∼5). While iron phases immobilized arsenic by sorption (up to 8700 mg kg−1 of arsenic concentration in the solid phase), aluminum contributed to produce particles with the capacity to resist shear stress (strength factors ∼90 %). More than 50 % of the total arsenic was removed from the aqueous phase within 100 m from the junction point, suggesting settling of iron and aluminum particles. These results showed that incomplete mixing was a controlling factor in the fate and transport of arsenic. Fluvial confluences receiving acid drainage are natural reactors that can attenuate toxic metals. A better understanding of the chemical-hydrodynamic interactions in fluvial confluences can lead to new strategies for enhanced attenuation of toxic metals. Keywords Aluminum Arsenic Acid drainage Confluence Iron Particle size Suspended solids Turbidity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700