Germline genes hypomethylation and expression define a molecular signature in peripheral blood of ICF patients: implications for diagnosis and etiology
详细信息    查看全文
  • 作者:Guillaume Velasco (1)
    Emma L Walton (1)
    Delphine Sterlin (2)
    Sabrine H茅douin (1)
    Hirohisa Nitta (5)
    Yuya Ito (5)
    Fanny Fouyssac (6)
    Andr茅 M茅garban茅 (7)
    Hiroyuki Sasaki (5)
    Capucine Picard (2) (3) (4)
    Claire Francastel (1)

    1. Epig茅n茅tique et Destin Cellulaire
    ; Universit茅 Paris Diderot-Paris7 ; CNRS UMR7216 ; Case Courrier 7042 ; 35 ; rue H茅l猫ne Brion ; 75205 ; Paris ; France
    2. Center for the Study of Primary Immunodeficiencies
    ; Assistance Publique-H么pitaux de Paris ; Necker Hospital ; Paris ; France
    5. Division of Epigenomics and Development
    ; Department of Molecular Genetics ; Medical Institute of Bioregulation ; Kyushu University ; Fukuoka ; Japan
    6. Service d鈥橦茅mato-oncologie P茅diatrique et Transplantations M茅dullaires
    ; Centre Hospitalier Universitaire de Nancy ; H么pital Brabois Enfants ; Vand艙uvre-l猫s-Nancy ; France
    7. Unit茅 de G茅n茅tique M茅dicale et laboratoire associ茅
    ; INSERM UMR S_910 ; Facult茅 de M茅decine ; Universit茅 Saint Joseph ; Beirut ; Lebanon
    3. Institut National de la Sant茅 et de la Recherche M茅dicale
    ; Laboratory of Human Genetics of Infectious Diseases ; Necker Branch ; U980 ; Paris ; France
    4. Imagine Institute
    ; University Paris Descartes ; Sorbonne Paris Cit茅 ; Paris ; France
  • 关键词:Agammaglobulinemia ; DNA methylation ; Heterochromatin ; DNA ; Satellite ; Gene expression ; Biological markers/diagnosis use ; Biological markers/etiology ; Genes ; X ; linked
  • 刊名:Orphanet Journal of Rare Diseases
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:246 KB
  • 参考文献:1. Maraschio, P, Zuffardi, O, Dalla Fior, T, Tiepolo, L (1988) Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet 25: pp. 173-180 CrossRef
    2. Hagleitner, MM, Lankester, A, Maraschio, P, Hulten, M, Fryns, JP, Schuetz, C, Gimelli, G, Davies, EG, Gennery, A, Belohradsky, BH, de Groot, R, Gerritsen, EJ, Mattina, T, Howard, PJ, Fasth, A, Reisli, I, Furthner, D, Slatter, MA, Cant, AJ, Cazzola, G, van Dijken, PJ, van Deuren, M, de Greef, JC, van der Maarel, SM, Weemaes, CM (2008) Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet 45: pp. 93-99 CrossRef
    3. Ehrlich, M, Jackson, K, Weemaes, C (2006) Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphan J Rare Dis 1: pp. 2 CrossRef
    4. Xu, GL, Bestor, TH, Bourc'his, D, Hsieh, CL, Tommerup, N, Bugge, M, Hulten, M, Qu, X, Russo, JJ, Viegas-Pequignot, E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: pp. 187-191 CrossRef
    5. Hansen, RS, Wijmenga, C, Luo, P, Stanek, AM, Canfield, TK, Weemaes, CM, Gartler, SM (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A 96: pp. 14412-14417 CrossRef
    6. Okano, M, Bell, DW, Haber, DA, Li, E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: pp. 247-257 CrossRef
    7. Gowher, H, Jeltsch, A (2002) Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem 277: pp. 20409-20414 CrossRef
    8. Moarefi, AH, Chedin, F (2011) ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol 409: pp. 758-772 CrossRef
    9. Ehrlich, M (2003) The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 109: pp. 17-28 CrossRef
    10. de Greef, JC, Wang, J, Balog, J, den Dunnen, JT, Frants, RR, Straasheijm, KR, Aytekin, C, van der Burg, M, Duprez, L, Ferster, A, Gennery, AR, Gimelli, G, Reisli, I, Schuetz, C, Schulz, A, Smeets, DF, Sznajer, Y, Wijmenga, C, van Eggermond, MC, van Ostaijen-Ten Dam, MM, Lankester, AC, van Tol, MJ, van den Elsen, PJ, Weemaes, CM, van der Maarel, SM (2011) Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet 88: pp. 796-804 CrossRef
    11. Weemaes, CM, van Tol, MJ, Wang, J, van Ostaijen-Ten Dam, MM, van Eggermond, MC, Thijssen, PE, Aytekin, C, Brunetti-Pierri, N, van der Burg, M, Graham Davies, E, Ferster, A, Furthner, D, Gimelli, G, Gennery, A, Kloeckener-Gruissem, B, Meyn, S, Powell, C, Reisli, I, Schuetz, C, Schulz, A, Shugar, A, van den Elsen, PJ, van der Maarel, SM (2013) Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet 21: pp. 1219-1225 CrossRef
    12. Jiang, YL, Rigolet, M, Bourc'his, D, Nigon, F, Bokesoy, I, Fryns, JP, Hulten, M, Jonveaux, P, Maraschio, P, Megarbane, A, Moncla, A, Viegas-P茅quignot, E (2005) DNMT3B mutations and DNA methylation defect define two types of ICF syndrome. Hum Mutat 25: pp. 56-63 CrossRef
    13. Tiepolo, L, Maraschio, P, Gimelli, G, Cuoco, C, Gargani, GF, Romano, C (1979) Multibranched chromosomes 1, 9, and 16 in a patient with combined IgA and IgE deficiency. Hum Genet 51: pp. 127-137 CrossRef
    14. Tuck-Muller, CM, Narayan, A, Tsien, F, Smeets, DF, Sawyer, J, Fiala, ES, Sohn, OS, Ehrlich, M (2000) DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet 89: pp. 121-128 CrossRef
    15. Ehrlich, M, Buchanan, KL, Tsien, F, Jiang, G, Sun, B, Uicker, W, Weemaes, CM, Smeets, D, Sperling, K, Belohradsky, BH, Tommerup, N, Misek, DE, Rouillard, JM, Kuick, R, Hanash, SM (2001) DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet 10: pp. 2917-2931 CrossRef
    16. Jin, B, Tao, Q, Peng, J, Soo, HM, Wu, W, Ying, J, Fields, CR, Delmas, AL, Liu, X, Qiu, J, Robertson, KD (2008) DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet 17: pp. 690-709 CrossRef
    17. Heyn, H, Vidal, E, Sayols, S, Sanchez-Mut, JV, Moran, S, Medina, I, Sandoval, J, Simo-Riudalbas, L, Szczesna, K, Huertas, D, Gatto, S, Matarazzo, MR, Dopazo, J, Esteller, M (2012) Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient. Epigenetics 7: pp. 542-550 CrossRef
    18. Matarazzo, MR, Boyle, S, D'Esposito, M, Bickmore, WA (2007) Chromosome territory reorganization in a human disease with altered DNA methylation. Proc Natl Acad Sci U S A 104: pp. 16546-16551 CrossRef
    19. Jefferson, A, Colella, S, Moralli, D, Wilson, N, Yusuf, M, Gimelli, G, Ragoussis, J, Volpi, EV (2010) Altered intra-nuclear organisation of heterochromatin and genes in ICF syndrome. PLoS One 5: pp. e11364 CrossRef
    20. Yehezkel, S, Segev, Y, Viegas-Pequignot, E, Skorecki, K, Selig, S (2008) Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 17: pp. 2776-2789 CrossRef
    21. Gatto, S, Della Ragione, F, Cimmino, A, Strazzullo, M, Fabbri, M, Mutarelli, M, Ferraro, L, Weisz, A, D'Esposito, M, Matarazzo, MR (2010) Epigenetic alteration of microRNAs in DNMT3B-mutated patients of ICF syndrome. Epigenetics 5: pp. 427-443 CrossRef
    22. Lana, E, Megarbane, A, Tourriere, H, Sarda, P, Lefranc, G, Claustres, M, De Sario, A (2012) DNA replication is altered in Immunodeficiency Centromeric instability Facial anomalies (ICF) cells carrying DNMT3B mutations. Eur J Hum Genet 20: pp. 1044-1050 CrossRef
    23. Velasco, G, Hube, F, Rollin, J, Neuillet, D, Philippe, C, Bouzinba-Segard, H, Galvani, A, Viegas-Pequignot, E, Francastel, C (2010) Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proc Natl Acad Sci U S A 107: pp. 9281-9286 CrossRef
    24. Walton, EL, Francastel, C, Velasco, G (2011) Maintenance of DNA methylation: Dnmt3b joins the dance. Epigenetics 6: pp. 1373-1377 CrossRef
    25. Brun, ME, Lana, E, Rivals, I, Lefranc, G, Sarda, P, Claustres, M, Megarbane, A, De Sario, A (2011) Heterochromatic genes undergo epigenetic changes and escape silencing in immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome. PLoS One 6: pp. e19464 CrossRef
    26. Rigolet, M, Gregoire, A, Lefort, G, Blanchet, P, Courbes, C, Rodiere, M, Sarda, P, Viegas-Pequignot, E (2007) Early prenatal diagnosis of ICF syndrome by mutation detection. Prenat Diagn 27: pp. 1075-1078 CrossRef
    27. Nitta, H, Unoki, M, Ichiyanagi, K, Kosho, T, Shigemura, T, Takahashi, H, Velasco, G, Francastel, C, Picard, C, Kubota, T, Sasaki, H (2013) Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J Hum Genet 58: pp. 455-460 CrossRef
    28. Maatouk, DM, Kellam, LD, Mann, MR, Lei, H, Li, E, Bartolomei, MS, Resnick, JL (2006) DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development 133: pp. 3411-3418 CrossRef
    29. Antequera, F, Boyes, J, Bird, A (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62: pp. 503-514 CrossRef
    30. Vilain, A, Bernardino, J, Gerbault-Seureau, M, Vogt, N, Niveleau, A, Lefrancois, D, Malfoy, B, Dutrillaux, B (2000) DNA methylation and chromosome instability in lymphoblastoid cell lines. Cytogenet Cell Genet 90: pp. 93-101 CrossRef
    31. Miniou, P, Jeanpierre, M, Blanquet, V, Sibella, V, Bonneau, D, Herbelin, C, Fischer, A, Niveleau, A, Viegas-Pequignot, E (1994) Abnormal methylation pattern in constitutive and facultative (X inactive chromosome) heterochromatin of ICF patients. Hum Mol Genet 3: pp. 2093-2102 CrossRef
    32. Hansen, RS, Stoger, R, Wijmenga, C, Stanek, AM, Canfield, TK, Luo, P, Matarazzo, MR, D'Esposito, M, Feil, R, Gimelli, G, Weemaes, CM, Laird, CD, Gartler, SM (2000) Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant. Hum Mol Genet 9: pp. 2575-2587 CrossRef
    33. Kaya, N, Al-Muhsen, S, Al-Saud, B, Al-Bakheet, A, Colak, D, Al-Ghonaium, A, Al-Dhekri, H, Al-Mousa, H, Arnaout, R, Al-Owain, M, Iqbal, M (2011) ICF syndrome in Saudi Arabia: immunological, cytogenetic and molecular analysis. J Clin Immunol 31: pp. 245-252 CrossRef
  • 刊物主题:Medicine/Public Health, general; Pharmacology/Toxicology; Medicinal Chemistry;
  • 出版者:BioMed Central
  • ISSN:1750-1172
文摘
Background Immunodeficiency Centromeric Instability and Facial anomalies (ICF) is a rare autosomal recessive disease characterized by reduction in serum immunoglobulins with severe recurrent infections, facial dysmorphism, and more variable symptoms including mental retardation. ICF is directly related to a genomic methylation defect that mainly affects juxtacentromeric heterochromatin regions of certain chromosomes, leading to chromosomal rearrangements that constitute a hallmark of this syndrome upon cytogenetic testing. Mutations in the de novo DNA methyltransferase DNMT3B, the protein ZBTB24 of unknown function, or loci that remain to be identified, lie at its origin. Despite unifying features, common or distinguishing molecular signatures are still missing for this disease. Method We used the molecular signature that we identified in a mouse model for ICF1 to establish transcriptional biomarkers to facilitate diagnosis and understanding of etiology of the disease. We assayed the expression and methylation status of a set of genes whose expression is normally restricted to germ cells, directly in whole blood samples and epithelial cells of ICF patients. Results We report that DNA hypomethylation and expression of MAEL and SYCE1 represent robust biomarkers, easily testable directly from uncultured cells to diagnose the most prevalent sub-type of the syndrome. In addition, we identified the first unifying molecular signatures for ICF patients. Of importance, we validated the use of our biomarkers to diagnose a baby born to a family with a sick child. Finally, our analysis revealed unsuspected complex molecular signatures in two ICF patients suggestive of a novel genetic etiology for the disease. Conclusions Early diagnosis of ICF syndrome is crucial since early immunoglobulin supplementation can improve the course of disease. However, ICF is probably underdiagnosed, especially in patients that present with incomplete phenotype or born to families with no affected relatives. The specific and robust biomarkers identified in this study could be introduced into routine clinical immunology or neurology departments to facilitate testing of patients with suspected ICF syndrome. In addition, as exemplified by two patients with a combination of molecular defects never described before, our data support the search for new types of mutations at the origin of ICF syndrome.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700