Design of microfluidic channels for magnetic separation of malaria-infected red blood cells
详细信息    查看全文
  • 作者:Wei-Tao Wu ; Andrea Blue Martin ; Alberto Gandini…
  • 关键词:Blood ; Malaria ; Microchannels ; Magnetic field ; Cell separation
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 全文大小:1,418 KB
  • 参考文献:Ahn CH, Allen MG, Trimmer W et al (1996) A fully integrated micromachined magnetic particle separator. J Microelectromechanical Syst 5:151–158. doi:10.​1109/​84.​536621 CrossRef
    Bhakdi SC, Ottinger A, Somsri S et al (2010) Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells. Malar J 9:38. doi:10.​1186/​1475-2875-9-38 CrossRef
    Carter V, Cable HC, Underhill BA et al (2003) Density gradient columns and magnetic isolation. Malar J 6:1–6
    Chen H, Bockenfeld D, Rempfer D et al (2007) Three-dimensional modeling of a portable medical device for magnetic separation of particles from biological fluids. Phys Med Biol 52:5205–5218. doi:10.​1088/​0031-9155/​52/​17/​007 CrossRef
    Chikov V, Kuznetsov A, Shapiro A (1993) Single cell magnetophoresis and its diagnostic value. J Magn Magn Mater 122(122):367–370CrossRef
    Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65CrossRef
    Dean D, Hemmer J, Vertegel A, Laberge M (2010) Frictional behavior of individual vascular smooth muscle cells assessed by lateral force microscopy. Materials (Basel) 3:4668–4680. doi:10.​3390/​ma3094668 CrossRef
    Dulińska I, Targosz M, Strojny W et al (2006) Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Methods 66:1–11. doi:10.​1016/​j.​jbbm.​2005.​11.​003 CrossRef
    Earhart CM, Wilson RJ, White RL et al (2009) Microfabricated magnetic sifter for high-throughput and high-gradient magnetic separation. J Magn Magn Mater 321:1436–1439. doi:10.​1016/​j.​jmmm.​2009.​02.​062 CrossRef
    Fairlamb AH, Paul F, Warhurst DC (1984) A simple magnetic method for the purification of malarial pigment. Mol Biochem Parasitol 12:307–312CrossRef
    Fenech M, Garcia D, Meiselman HJ, Cloutier G (2009) A particle dynamic model of red blood cell aggregation kinetics. Ann Biomed Eng 37:2299–2309. doi:10.​1007/​s10439-009-9775-1 CrossRef
    Furdui VI, Harrison DJ (2004) Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip 4:614–618. doi:10.​1039/​b409366f CrossRef
    Furlani EP (2007) Magnetophoretic separation of blood cells at the microscale. J Phys D Appl Phys 40:1313–1319. doi:10.​1088/​0022-3727/​40/​5/​001 CrossRef
    Gandini A, Weinstein R, Sawh RP, Parks D (2013) Blood purification method and apparatus for the treatment of malaria, U.S. Patent No. 8,556,843. U.S. Patent and Trademark Office, Washington, DC
    Gerber R (1984) Magnetic filtration of ultra-fine particles. Magn IEEE Trans 20:1159–1164CrossRef
    Hackett S, Hamzah J, Davis TME, St Pierre TG (2009) Magnetic susceptibility of iron in malaria-infected red blood cells. Biochim Biophys Acta (BBA)-Molecular Basis Dis 1792:93–99CrossRef
    Hahn YK, Jin Z, Kang JH et al (2007) Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient. Anal Chem 79:2214–2220. doi:10.​1021/​ac061522l CrossRef
    Han K-H, Frazier AB (2004) Continuous magnetophoretic separation of blood cells in microdevice format. J Appl Phys 96:5797–5802CrossRef
    Han K-H, Frazier AB (2006) Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6:265–273CrossRef
    Hayes MA, Polson NA, Phayre AN, Garcia AA (2001) Flow-Based Microimmunoassay. Anal Chem 73:5896–5902. doi:10.​1021/​ac0104680 CrossRef
    Hoomans BPB, Kuipers JAM, Briels WJ, van Swaaij WPM (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem Eng Sci 51:99–118. doi:10.​1016/​0009-2509(95)00271-5 CrossRef
    Iliescu C, Xu G, Barbarini E et al (2009) Microfluidic device for continuous magnetophoretic separation of white blood cells. Microsyst Technol 15:1157–1162. doi:10.​1007/​s00542-008-0718-9 CrossRef
    Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85:5093–5095. doi:10.​1063/​1.​1823015 CrossRef
    Johnson G, Rajagopal KR, Massoudi M (1990) A review of interaction mechanisms in fluid-solid flows. USDOE Pittsburgh Energy Technology Center, PA (USA)CrossRef
    Kang JH, Krause S, Tobin H et al (2012) A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12:2175. doi:10.​1039/​c2lc40072c CrossRef
    Karl S, David M, Moore L et al (2008) Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission. Malar J 7:66. doi:10.​1186/​1475-2875-7-66 CrossRef
    Karl S, Davis TME, St-Pierre TG (2009) A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR. Malar J 8:98. doi:10.​1186/​1475-2875-8-98 CrossRef
    Kim KS, Park J-K (2005) Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 5:657–664. doi:10.​1039/​b502225h CrossRef
    Kim J, Massoudi M, Antaki JF, Gandini A (2012) Removal of malaria-infected red blood cells using magnetic cell separators: a computational study. Appl Math Comput 218:6841–6850CrossRef MathSciNet MATH
    Kumar RK, Lykke AWJ (1984) Cell separation: a review. Pathology 16:53–62CrossRef
    Lien K-Y, Lin J-L, Liu C-Y et al (2007) Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. Lab Chip 7:868–875CrossRef
    Link JM, Cuypers LA, Deen NG, Kuipers JAM (2005) Flow regimes in a spout-fluid bed: a combined experimental and simulation study. Chem Eng Sci 60:3425–3442. doi:10.​1016/​j.​ces.​2005.​01.​027 CrossRef
    Melville D, Paul F, Roath S (1975) Direct magnetic separation of red cells from whole blood. Nat 255:706
    Moore LR, Fujioka H, Williams PS et al (2006) Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis. FASEB J 20:747–749
    Nalbandian RM, Sammons DW, Manley M et al (1995) A Molecular-based Magnet Test for Malaria. Am J Clin Pathol 103:57–64
    Nam J, Huang H, Lim H et al (2013) Magnetic separation of malaria-infected red blood cells in various developmental stages. Anal Chem 85:7316–7323. doi:10.​1021/​ac4012057 CrossRef
    OpenCFD (2011) OpenFOAM Programmer’s Guide Version 2.1.0
    Oshima S, Sankai Y (2009) Improvement of the accuracy in the optical hematocrit measurement by optimizing mean optical path length. Artif Organs 33:749–756CrossRef
    Owen CS (1978) High gradient magnetic separation of erythrocytes. Biophys J 22:171–178. doi:10.​1016/​S0006-3495(78)85482-4 CrossRef
    Pamme N, Eijkel JCT, Manz A (2006) On-chip free-flow magnetophoresis: separation and detection of mixtures of magnetic particles in continuous flow. J Magn Magn Mater 307:237–244CrossRef
    Paul F, Roath S, Melville D et al (1981) Separation of malaria-infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation technique. Lancet 318:70–71CrossRef
    Ribaut C, Berry A, Chevalley S et al (2008) Concentration and purification by magnetic separation of the erythrocytic stages of all human Plasmodium species. Malar J 7:45. doi:10.​1186/​1475-2875-7-45 CrossRef
    Rusche H, Issa RI (2000) The Effect of Void age on the Drag Force on Particles, Droplets and Bubbles in Dispersed Two-Phase Flow
    Su J, Gu Z, Xu XY (2011) Discrete element simulation of particle flow in arbitrarily complex geometries. Chem Eng Sci 66:6069–6088. doi:10.​1016/​j.​ces.​2011.​08.​025 CrossRef
    Takayasu M, Duske N, Ash SR, Friedlaender FJ (1982) HGMS studies of blood cell behavior in plasma. IEEE Trans 18:1520–1522
    Trang DTX, Huy NT, Kariu T et al (2004) One-step concentration of malarial parasite-infected red blood cells and removal of contaminating white blood cells. Malar J 3:7. doi:10.​1186/​1475-2875-3-7 CrossRef
    Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71:239–250. doi:10.​1016/​0032-5910(92)88030-L CrossRef
    van der Hoef MA, Ye M, van Sint Annaland M et al (2006) Computational fluid dynamics. Elsevier, USA
    Verbruggen B, Tóth T, Cornaglia M et al (2015) Separation of magnetic microparticles in segmented flow using asymmetric splitting regimes. Microfluid Nanofluidics 18:91–102CrossRef
    WHO (2013) Malaria: Report By the Secretariat. In: Sixty-sixth World Health Assembly. p A66/21
    Wu X, Wu H, Hu Y (2011) Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid Nanofluidics 11:11–24CrossRef
    Wu W-T, Aubry N, Massoudi M (2014a) On the coefficients of the interaction forces in a two-phase flow of a fluid infused with particles. Int J Non Linear Mech 59:76–82CrossRef
    Wu W-T, Aubry N, Massoudi M et al (2014b) A numerical study of blood flow using mixture theory. Int J Eng Sci 76:56–72CrossRef MathSciNet
    Wu W-T, Yang F, Antaki JF et al (2015) Study of blood flow in several benchmark micro-channels using a two-fluid approach. Int J Eng Sci 95:49–59CrossRef
    Xia N, Hunt TP, Mayers BT et al (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8:299–308. doi:10.​1007/​s10544-006-0033-0 CrossRef
    Yin X, Thomas T, Zhang J (2013) Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation. Microvasc Res 89:47–56CrossRef
    Yung CW, Fiering J, Mueller AJ, Ingber DE (2009) Micromagnetic-microfluidic blood cleansing device. Lab Chip 9:1171–1177. doi:10.​1039/​b816986a CrossRef
    Zborowski M, Sun L, Moore LR et al (1999) Continuous cell separation using novel magnetic quadrupole flow sorter. J Magn Magn Mater 194:224–230CrossRef
    Zborowski M, Ostera GR, Moore LR et al (2003) Red blood cell magnetophoresis. Biophys J 84:2638–2645CrossRef
    Zhang J, Johnson PC, Popel AS (2008) Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J Biomech 41:47–55CrossRef
    Zhu T, Lichlyter DJ, Haidekker MA, Mao L (2011) Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluidics 10:1233–1245CrossRef
  • 作者单位:Wei-Tao Wu (1)
    Andrea Blue Martin (1)
    Alberto Gandini (1)
    Nadine Aubry (2)
    Mehrdad Massoudi (3)
    James F. Antaki (1)

    1. Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
    2. Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
    3. U. S. Department of Energy, National Energy Technology Laboratory (NETL), Pittsburgh, PA, 15236, USA
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han and Frazier (Lab Chip 6:265–273, 2006) involving a microfluidic magnetophoretic separator for paramagnetic deoxygenated blood cells. The computational model was then applied to a parametric study of a parallel-plate separator having hematocrit of 40 % with 10 % of the RBCs as pRBCs. Specifically, we investigated the hypothesis of introducing an upstream constriction to the channel to divert the magnetic cells within the near-wall layer where the magnetic force is greatest. Simulations compared the efficacy of various geometries upon the stratification efficiency of the pRBCs. For a channel with nominal height of 100 µm, the addition of an upstream constriction of 80 % improved the proportion of pRBCs retained adjacent to the magnetic wall (separation efficiency) by almost twofold, from 26 to 49 %. Further addition of a downstream diffuser reduced remixing and hence improved separation efficiency to 72 %. The constriction introduced a greater pressure drop (from 17 to 495 Pa), which should be considered when scaling up this design for a clinical-sized system. Overall, the advantages of this design include its ability to accommodate physiological hematocrit and high throughput, which is critical for clinical implementation as a blood-filtration system. Keywords Blood Malaria Microchannels Magnetic field Cell separation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700