Preserved cross-bridge kinetics in human hypertrophic cardiomyopathy patients with MYBPC3 mutations
详细信息    查看全文
  • 作者:Sabine J. van Dijk (1)
    Nicky M. Boontje (1)
    Martijn W. Heymans (2)
    Folkert J. ten Cate (3)
    Michelle Michels (3)
    Cris dos Remedios (4)
    Dennis Dooijes (5)
    Marjon A. van Slegtenhorst (6)
    Jolanda van der Velden (1) (7)
    Ger J. M. Stienen (1) (8)
  • 关键词:Cardiac muscle ; Cross ; bridge ; Muscle contraction ; MyBP ; C mutation
  • 刊名:Pfl篓鹿gers Archiv - European Journal of Physiology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:466
  • 期:8
  • 页码:1619-1633
  • 全文大小:1,332 KB
  • 参考文献:1. Alders M, Jongbloed R, Deelen W, van den Wijngaard A, Doevendans P, Ten Cate F et al (2003) The 2373insG mutation in the MYBPC3 gene is a founder mutation, which accounts for nearly one-fourth of the HCM cases in the Netherlands. Eur Heart J 24:1848-853 CrossRef
    2. Barefield D, Sadayappan SJ (2010) Phosphorylation and function of cardiac myosin binding protein-C in health and disease. Mol Cell Cardiol 48:866-75 CrossRef
    3. Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, Anderson PA (1997) Troponin I phosphorylation in the normal and failing adult human heart. Circulation 96:1495-500 CrossRef
    4. Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJM et al (2005) Cardiomyocyte stiffness in diastolic heart failure. Circulation 111:774-81 CrossRef
    5. Brenner B (1988) Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci U S A 85:3265-269 CrossRef
    6. Carrier L, Bonne G, Bahrend E, Yu B, Richard P, Niel F et al (1997) Organization and sequence of human cardiac myosin binding protein C gene ( / MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res 80:427-34
    7. Chen PP, Patel JR, Rybakova IN, Walker JW, Moss RL (2010) Protein kinase A-induced myofilament desensitization to Ca2+ as a result of phosphorylation of cardiac myosin-binding protein C. J Gen Physiol 136:615-27 CrossRef
    8. de Tombe PP, Stienen GJM (2007) Impact of temperature on cross-bridge cycling kinetics in rat myocardium. J Physiol 584:591-00 CrossRef
    9. Freiburg A, Gautel M (1996) A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 235:317-23 CrossRef
    10. Gautel M, Zuffardi O, Freiburg A, Labeit S (1995) Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? EMBO J 14:1952-960
    11. Germans T, Russel IK, Gotte MJ, Spreeuwenberg MD, Doevendans PA, Pinto YM et al (2010) How do hypertrophic cardiomyopathy mutations affect myocardial function in carriers with normal wall thickness? Assessment with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:13 CrossRef
    12. Gilbert R, Kelly MG, Mikawa T, Fischman DA (1996) The carboxyl terminus of myosin binding protein C (MyBP-C, C-protein) specifies incorporation into the A-band of striated muscle. J Cell Sci 109:101-11
    13. Hamdani N, Kooij V, van Dijk S, Merkus D, Paulus WJ, dos Remedios C et al (2008) Sarcomeric dysfunction in heart failure. Cardiovasc Res 77:649-58 CrossRef
    14. Hamdani N, Paulus WJ, van Heerebeek L, Borbely A, Boontje NM, Zuidwijk MJ et al (2009) Distinct myocardial effects of beta-blocker therapy in heart failure with normal and reduced left ventricular ejection fraction. Eur Heart J 30:1863-872 CrossRef
    15. Harris SP, Bartley CR, Hacker TA, McDonald KS, Douglas PS, Greaser ML et al (2002) Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circ Res 90:594-01 CrossRef
    16. Ho CY (2009) Hypertrophic cardiomyopathy: preclinical and early phenotype. J Cardiovasc Transl Res 2:462-70 CrossRef
    17. Hoskins AC, Jacques A, Bardswell SC, McKenna WJ, Tsang V, dos Remedios CG et al (2010) Normal passive viscoelasticity but abnormal myofibrillar force generation in human hypertrophic cardiomyopathy. J Mol Cell Cardiol 49:737-45 CrossRef
    18. Khouri SJ, Maly GT, Suh DD, Walsh TE (2004) A practical approach to the echocardiographic evaluation of diastolic function. J Am Soc Echocardiogr 17:290-97 CrossRef
    19. Koretz JF (1979) Effects of C-protein on synthetic myosin filament structure. Biophys J 27:433-46 CrossRef
    20. Korte FS, McDonald KS, Harris SP, Moss RL (2003) Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C. Circ Res 93:752-58 CrossRef
    21. Kraft T, Witjas-Paalberends ER, Boontje NM, Tripathi S, Brandis A, Montag J et al (2013) Familial hypertrophic cardiomyopathy: functional effects of myosin mutation R723G in cardiomyocytes. J Mol Cell Cardiol 57:13-2 CrossRef
    22. Kulikovskaya I, McClellan G, Levine R, Winegrad S (2003) Effect of extraction of myosin binding protein C on contractility of rat heart. Am J Physiol Heart Circ Physiol 285:H857–H865
    23. Lecarpentier Y, Vignier N, Oliviero P, Guellich A, Carrier L, Coirault C (2008) Cardiac myosin-binding protein C modulates the tuning of the molecular motor in the heart. Biophys J 95:720-28 CrossRef
    24. Lee EJ, Peng J, Radke M, Gotthardt M, Granzier HL (2010) Calcium sensitivity and the Frank–Starling mechanism of the heart are increased in titin N2B region-deficient mice. J Mol Cell Cardiol 49:449-58 CrossRef
    25. Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE et al (2003) American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol 42:1687-713 CrossRef
    26. Marston S, Copeland O, Jacques A, Livesey K, Tsang V, McKenna WJ et al (2009) Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ Res 105:219-22 CrossRef
    27. Messer AE, Jacques AM, Marston SB (2007) Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure. J Mol Cell Cardiol 42:247-59 CrossRef
    28. Michels M, Hoedemaekers YM, Kofflard MJ, Frohn-Mulder I, Dooijes D, Majoor-Krakauer D et al (2007) Familial screening and genetic counselling in hypertrophic cardiomyopathy: the Rotterdam experience. Neth Heart J 15:184-90 CrossRef
    29. Michels M, Soliman OI, Kofflard MJ, Hoedemaekers YM, Dooijes D, Majoor-Krakauer D et al (2009) Diastolic abnormalities as the first feature of hypertrophic cardiomyopathy in Dutch myosin-binding protein C founder mutations. J Am Coll Cardiol Cardiovasc Imaging 2:58-4 CrossRef
    30. Millar NC, Homsher E (1990) The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. A steady-state and transient kinetic study. J Biol Chem 265:20234-0240
    31. Moolman-Smook J, Flashman E, de Lange W, Li Z, Corfield V, Redwood C et al (2002) Identification of novel interactions between domains of Myosin binding protein-C that are modulated by hypertrophic cardiomyopathy missense mutations. Circ Res 91:704-11 CrossRef
    32. Moos C, Offer G, Starr R, Bennett P (1975) Interaction of C-protein with myosin, myosin rod and light meromyosin. J Mol Biol 97:1- CrossRef
    33. Nagayama T, Takimoto E, Sadayappan S, Mudd JO, Seidman JG, Robbins J et al (2007) Control of in vivo contraction/relaxation kinetics by myosin binding protein C: protein kinase A phosphorylation dependent and independent regulation. Circulation 116:2399-408 CrossRef
    34. Nagueh SF, Bachinski LL, Meyer D, Hill R, Zoghbi WA, Tam JW et al (2001) Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 104:128-30 CrossRef
    35. Narolska NA, van Loon RB, Boontje NM, Zaremba R, Penas SE, Russell J et al (2005) Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc Res 65:221-29 CrossRef
    36. Palmer BM, Georgakopoulos D, Janssen PM, Wang Y, Alpert NR, Belardi DF et al (2004) Role of cardiac myosin binding protein C in sustaining left ventricular systolic stiffening. Circ Res 94:1249-255 CrossRef
    37. Palmer BM, Noguchi T, Wang Y, Heim JR, Alpert NR, Burgon PG et al (2004) Effect of cardiac myosin binding protein-C on mechanoenergetics in mouse myocardium. Circ Res 94:1615-622 CrossRef
    38. Piazzesi G, Linari M, Reconditi M, Vanzi F, Lombardi V (1997) Cross-bridge detachment and attachment following a step stretch imposed on active single frog muscle fibres. J Physiol 498:3-5
    39. Rice R, Guinto P, Dowell-Martino C, He H, Hoyer K, Krenz M et al (2010) Cardiac myosin heavy chain isoform exchange alters the phenotype of cTnT-related cardiomyopathies in mouse hearts. J Mol Cell Cardiol 48:979-88 CrossRef
    40. Saber W, Begi KJ, Warshaw DM, VanBuren P (2008) Cardiac myosin binding protein-C modulates actomyosin binding and kinetics in the in vitro motility assay. J Mol Cell Cardiol 44:1053-061 CrossRef
    41. Sadayappan S, Gulick J, Osinska H, Martin LA, Hahn HS, Dorn GW et al (2005) Cardiac myosin-binding protein-C phosphorylation and cardiac function. Circ Res 97:1156-163 CrossRef
    42. Sequeira V, Wijnker PJ, Nijenkamp LL, Kuster DW, Najafi A, Witjas-Paalberends ER et al (2013) Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ Res 112:1491-505 CrossRef
    43. Shaffer JF, Kensler RW, Harris SP (2009) The myosin-binding protein C motif binds to F-actin in a phosphorylation-sensitive manner. J Biol Chem 284:12318-2327 CrossRef
    44. Shub C, Klein AL, Zachariah PK, Bailey KR, Tajik AJ (1994) Determination of left ventricular mass by echocardiography in a normal population: effect of age and sex in addition to body size. Mayo Clin Proc 69:205-11 CrossRef
    45. Steiger GJ (1977) Tension transients in extracted rabbit heart muscle preparations. J Mol Cell Cardiol 9:671-85 CrossRef
    46. Steiger GJ (1977) Stretch activation and tension transients in cardiac, skeletal and insect flight muscle. In: Tregear RT (ed) Insect flight muscle. Elsevier, Amsterdam, pp 221-68.
    47. Stelzer JE, Dunning SB, Moss RL (2006) Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium. Circ Res 98:1212-218 CrossRef
    48. Stelzer JE, Fitzsimons DP, Moss RL (2006) Ablation of myosin-binding protein-C accelerates force development in mouse myocardium. Biophys J 90:4119-127 CrossRef
    49. Stelzer JE, Patel JR, Moss RL (2006) Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C. Circ Res 99:884-90 CrossRef
    50. Stelzer JE, Patel JR, Walker JW, Moss RL (2007) Differential roles of cardiac myosin-binding protein C and cardiac troponin I in the myofibrillar force responses to protein kinase A phosphorylation. Circ Res 101:503-11 CrossRef
    51. Tong CW, Stelzer JE, Greaser ML, Powers PA, Moss RL (2008) Acceleration of crossbridge kinetics by protein kinase A phosphorylation of cardiac myosin binding protein C modulates cardiac function. Circ Res 103:974-82 CrossRef
    52. van der Velden J, Papp Z, Zaremba R, Boontje NM, de Jong JW, Owen VJ et al (2003) Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovasc Res 57:37-7 CrossRef
    53. van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S et al (2009) Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119:1473-483 CrossRef
    54. van Dijk SJ, Paalberends ER, Najafi A, Michels M, Sadayappan S, Carrier L et al (2012) Contractile dysfunction irrespective of the mutant protein in human hypertrophic cardiomyopathy with normal systolic function. Circ Heart Failure 5:36-6 CrossRef
    55. Vasan RS, Benjamin EJ, Levy D (1995) Prevalence, clinical features and prognosis of diastolic heart failure: an epidemiologic perspective. J Am Coll Cardiol 26:1565-574 CrossRef
    56. Wang L, Seidman JG, Seidman CE (2010) Narrative review: harnessing molecular genetics for the diagnosis and management of hypertrophic cardiomyopathy. Ann Intern Med 152(513-0):W181
    57. Weisberg A, Winegrad S (1996) Alteration of myosin cross bridges by phosphorylation of myosin-binding protein C in cardiac muscle. Proc Natl Acad Sci U S A 93:8999-003 CrossRef
    58. Whitten AE, Jeffries CM, Harris SP, Trewhella J (2008) Cardiac myosin-binding protein C decorates F-actin: implications for cardiac function. Proc Natl Acad Sci U S A 105:18360-8365 CrossRef
    59. Zaremba R, Merkus D, Hamdani N, Lamers JMJ, Paulus WJ, dos Remedios C et al (2007) Quantitative analysis of myofilament protein phosphorylation in small cardiac biopsies. Proteomic Clin Appl 1:1285-290 CrossRef
    60. Zoghbi ME, Woodhead JL, Moss RL, Craig R (2008) Three-dimensional structure of vertebrate cardiac muscle myosin filaments. Proc Natl Acad Sci U S A 105:2386-390 CrossRef
  • 作者单位:Sabine J. van Dijk (1)
    Nicky M. Boontje (1)
    Martijn W. Heymans (2)
    Folkert J. ten Cate (3)
    Michelle Michels (3)
    Cris dos Remedios (4)
    Dennis Dooijes (5)
    Marjon A. van Slegtenhorst (6)
    Jolanda van der Velden (1) (7)
    Ger J. M. Stienen (1) (8)

    1. Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
    2. Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
    3. Thorax Center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
    4. Muscle Research Unit, Institute for Biomedical Research, The University of Sydney, Sydney, Australia
    5. Clinical Genetics, Medical Center Utrecht, Utrecht, The Netherlands
    6. Clinical Genetics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
    7. ICIN—Netherlands Heart Institute, Utrecht, The Netherlands
    8. Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
  • ISSN:1432-2013
文摘
Mutations in the MYBPC3 gene, encoding cardiac myosin binding protein C (cMyBP-C) are frequent causes of hypertrophic cardiomyopathy (HCM). Previously, we have presented evidence for reduced cMyBP-C expression (haploinsufficiency), in patients with a truncation mutation in MYBPC3. In mice, lacking cMyBP-C cross-bridge kinetics was accelerated. In this study, we investigated whether cross-bridge kinetics was altered in myectomy samples from HCM patients harboring heterozygous MYBPC3 mutations (MYBPC3mut). Isometric force and the rate of force redevelopment (k tr) at different activating Ca2+ concentrations were measured in mechanically isolated Triton-permeabilized cardiomyocytes from MYBPC3mut (n--8) and donor (n--) tissue. Furthermore, the stretch activation response of cardiomyocytes was measured in tissue from eight MYBPC3mut patients and five donors to assess the rate of initial force relaxation (k 1) and the rate and magnitude of the transient increase in force (k 2 and P 3, respectively) after a rapid stretch. Maximal force development of the cardiomyocytes was reduced in MYBPC3mut (24.5?±-.3?kN/m2) compared to donor (34.9?±-.6?kN/m2). The rates of force redevelopment in MYBPC3mut and donor over a range of Ca2+ concentrations were similar (k tr at maximal activation: 0.63?±-.03 and 0.75?±-.09?s?, respectively). Moreover, the stretch activation parameters did not differ significantly between MYBPC3mut and donor (k 1: 8.5±0.5 and 8.8?±-.4?s?; k 2: 0.77?±-.06 and 0.74?±-.09?s?; P 3: 0.08?±-.01 and 0.09?±-.01, respectively). Incubation with protein kinase A accelerated k 1 in MYBPC3mut and donor to a similar extent. Our experiments indicate that, at the cMyBP-C expression levels in this patient group (63?±-?% relative to donors), cross-bridge kinetics are preserved and that the depressed maximal force development is not explained by perturbation of cross-bridge kinetics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700