A Multi-robot Control Policy for Information Gathering in the Presence of Unknown Hazards
详细信息    查看全文
  • 刊名:Springer Tracts in Advanced Robotics
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:100
  • 期:1
  • 页码:455-472
  • 全文大小:311 KB
  • 参考文献:1.F. Bourgault, A.A. Makarenko, S.B. Williams, B. Grocholsky, H.F. Durrant-Whyte, Information based adaptive robotic exploration, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS 02) (2002), pp. 540–545
    2.H.-L. Choi, J.P. How, Continuous trajectory planning of mobile sensors for informative forecasting. Automatica 46(8), 1266–1275 (2010)MathSciNet CrossRef MATH
    3.H.-L. Choi, J.P. How, Efficient targeting of sensor networks for large-scale systems. IEEE Trans. Control Syst. Technol. 19(6), 1569–1577 (2011)CrossRef
    4.J. Cortés, S. Martínez, T. Karatas, F. Bullo, Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)
    5.R.A. Cortez, H.G. Tanner, R. Lumia, C.T. Abdallah, Information surfing for radiation map building. Int. J. Robot. Autom. 26(1), 4–12 (2011)MATH
    6.T. Cover, J. Thomas, Elements of Information Theory, 2 edn. (Wiley, 2006)
    7.B. Grocholsky, Information-Theoretic Control of Multiple Sensor Platforms. Ph.D. thesis, University of Sydney (2002)
    8.G.M. Hoffmann, C.J. Tomlin, Mobile sensor network control using mutual information methods and particle filters. IEEE Trans. Autom. Control 55(1), 32–47 (2010)MathSciNet CrossRef
    9.A. Howard, M.J. Matarić, G.S. Sukhatme, Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem, in Proceedings of the 6th International Symposium on Distributed Autonomous Robotic Systems (DARS02), Fukuoka, Japan (2002)
    10.B.J. Julian, M. Angermann, M. Schwager, D. Rus, A scalable information theoretic approach to distributed robot coordination, in Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA (2011)
    11.A. Krause, C. Guestrin, Near-optimal observation selection using submodular functions, in Proceedings of 22nd Conference on Artificial Intelligence (AAAI), Vancouver, Canada (2007)
    12.A. Krause, C. Guestrin, A. Gupta, J. Kleinberg, Near-optimal sensor placements: maximizing information while minimizing communication cost, in Proceedings of Information Processing in Sensor Networks (IPSN), Nashville, TN (2006)
    13.A. Krause, A. Singh, C. Guestrin, Near-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008)MATH
    14.W. Li, C.G. Cassandras, Distributed cooperative coverage control of sensor networks, in Proceedings of the IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain (2005)
    15.K.M. Lynch, I.B. Schwartz, P. Yang, R.A. Freeman, Decentralized environmental modeling by mobile sensor networks. IEEE Trans. Robot. 24(3), 710–724 (2008)CrossRef
    16.S. Martínez, Distributed interpolation schemes for field estimation by mobile sensor networks. IEEE Trans. Control Syst. Technol. 18(2), 419–500 (2010)CrossRef
    17.D.P. Palomar, S. Verdú, Gradient of mutual information in linear vector gaussian channels. IEEE Trans. Inf. Theory 52(1), 141–154 (2006)MathSciNet CrossRef MATH
    18.D.P. Palomar, S. Verdú, Representation of mutual information via input estimates. IEEE Trans. Inf. Theory 53(2), 453–470 (2007)MathSciNet CrossRef MATH
    19.M. Schwager, D. Rus, J.J. Slotine, Decentralized, adaptive coverage control for networked robots. Int. J. Robot. Res. 28(3), 357–375 (2009)CrossRef
    20.C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNet CrossRef MATH
    21.P. Viola, W.M. Wells III, Alignment by maximization of mutual information. Int. J. Comput. Vis. 24(2), 137–154 (1997)CrossRef
    22.M.P. Vitus, C.J. Tomlin, Sensor placement for improved robotic navigation, in The Proceedings of Robotics: Science and Systems, Zaragoza, Spain (2010)
  • 作者单位:Mac Schwager (5) (6)
    Philip Dames (5)
    Daniela Rus (6)
    Vijay Kumar (5)

    5. GRASP Lab, University of Pennsylvania, 3330 Walnut St, Philadelphia, PA, 19104, USA
    6. Computer Science and Artificial Intelligence Lab, MIT, 32 Vassar St, Cambridge, MA, 02139, USA
  • 丛书名:Robotics Research
  • ISBN:978-3-319-29363-9
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Control Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1610-742X
  • 卷排序:100
文摘
This paper addresses the problem of deploying a network of robots to gather information in an environment, where the environment is hazardous to the robots. This may mean that there are adversarial agents in the environment trying to disable the robots, or that some regions of the environment tend to make the robots fail, for example due to radiation, fire, adverse weather, or caustic chemicals. A probabilistic model of the environment is formulated, under which recursive Bayesian filters are used to estimate the environment events and hazards online. The robots must control their positions both to avoid sensor failures and to provide useful sensor information by following the analytical gradient of mutual information computed using these online estimates. Mutual information is shown to combine the competing incentives of avoiding failure and collecting informative measurements under a common objective. Simulations demonstrate the performance of the algorithm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700