Structural control on drainage network and catchment area geomorphology in the Dead Sea area: an evaluation using remote sensing and geographic information systems in the Wadi Zerka Ma'in catchment area (Jordan)
详细信息    查看全文
  • 作者:Taleb Odeh ; Richard Gloaguen ; Al-Sharifa Hind Mohammad…
  • 关键词:Dead Sea ; Catchment area ; Drainage network ; Strike ; slip fault ; GIS ; Remotes sensing ; Structural control
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:75
  • 期:6
  • 全文大小:6,235 KB
  • 参考文献:Abrahams D (1984) Channel networks: a geomorphological perspective. Water Resour Res 20:161–188CrossRef
    Andrews J (1991) Palaeozoic lithostratigraphy in the subsurface of Jordan. Nat Resour Auth Geol Bull 2, Amman, p 75
    Bayer J (1988) Wadi Araba und Jordantal, Ein tektonischer Graben und zugleich Blattverschiebung. Nat Mus 118:33–45
    Ben-Avraham Z (1991) Development of asymmetric basins along continental transform faults. Tectonophysics 215:209–220CrossRef
    Bender F (1968) Geologie von Jordanien. Gebrueder Borntraeger, Berlin
    Bender F (1974) Geology of Jordan. Contribution of the regional geology of the earth. Borntraeger, Berlin, p 196
    Bundesanstalt für Bodenforschung und Rohstoffe (BGR) (1997) Investigations of the regional basalt aquifer system in Jordan and Syria, E/ESCWA/ENR/1, Hannover,p 60
    Bishop P, Hoey TB, Jansen JD, Artza IL (2005) Knickpoint recession rate and catchment area: the case of uplifted rivers in Eastern Scotland. Earth Surf Proc Land 30:767–778CrossRef
    Bolongaro-Crevenna A, Torres-Rodríguez V, Sorani V, Frame D, Ortiz MA (2005) Geomorphometric analysis for characterizing landforms in Morelos State, Mexico. Geomorphology 67:407–422CrossRef
    Closson D, Abou Karaki K (2009) Human-induced geological hazards along the Dead Sea coast. Environ Geol 58:371–380CrossRef
    Closson D, Abou Karaki N, Hallot F (2010) Landslides along the Jordanian Dead Sea coast triggered by the lake level lowering. Environ Earth Sci 59:1417–1430CrossRef
    De Vries HL, Barendsen GW (1954) Measurement of age by the carbon-14 technique. Nature 174(4442):1138–1141CrossRef
    Dubertret L (1929) Etudes des regions Volcaniques du Huran, du Djabal Druse et du diret et Touloul. Rev Geogr Pyhs Geol Dyn 2(4):275–321 [Paris]
    El Bastawesy M (2007) Influence of DEM source and resolution on the hydrographical simulation of Wadi Keed catchment, Southern Sinia, Egypt. Egypt J Rem Sens Space Sci 9:68–79
    El Bastawesy M, Ali R, Al Harbi K, Faid A (2013) Impact of the geomorphology and soil management on the development of waterlogging in closed drainage basins of Egypt and Saudi Arabia. Environ Earth Sci 68:1271–1283CrossRef
    Enzel Y, Agnon A, Stein M (2006) New frontiers in Dead Sea paleoenvironmental research. Geological Society of America, Boulder, p 401
    Evans S (1972) General geomorphology, derivatives of altitude and descriptive statistics. In: Chorley RJ (ed) Spatial analysis in geomorphology. Harper and Row, New York, pp 17–90
    Flexer A (1968) Stratigraphy and facies development of the Mount Scopus Group in Israel and adjacent countries. Isr J Earth Sci 17:85–114
    Flint J (1974) Stream gradient as a function of order, magnitude, and discharge. Water Resour Res 10:969–973CrossRef
    Frumkin A, Elitzur Y (2002) Historic Dead Sea level fluctuations calibrated with geological and archaeological evidence. Quat Res 57:334–342CrossRef
    Gardner W (1983) Experimental study of knickpoint and longitudinal evolution in cohesive, homogeneous material. Geol Soc Am Bull 94:664–672CrossRef
    Garfunkel Z, Ben-Avraham Z (1996) The structure of the Dead Sea basin. Tectonophysics 266:155–176CrossRef
    Garrote J, Cox T, Swann C, Ellis M (2006) Tectonic geomorphology of the Southeastern Mississippi Embayment in northern Mississippi, USA. Geol Soc Am Bull 118–9:1160–1170CrossRef
    Gong J, Xie J (2009) Extraction of drainage networks from large terrain datasets using high through put computing. Comput Geosci 35:337–346CrossRef
    Hack T (1973) Stream-profile analysis and stream-gradient index. J Res US Geol Surv 1:421–429
    Horowitz A (2001) The Jordan Rift Valley. Ballkema, Rotterdam, p 730CrossRef
    Horton R (1945) Erosional development of stream and their drainage basin: hydrophysical approach to quantitive morphology. Geol Soc Am Bull 56:275–370CrossRef
    Huggett R (2007) Fundamentals of geomorphology. Routledge, New York, p 447
    Hurtrez E, Sol C, Lucazeau F (1999) Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (central Nepal). Earth Surf Proc Land 24:799–808CrossRef
    Johnson P (1998) Tectonic map of Saudi Arabia and adjacent areas. Technical report USGS-TR-98-3, p 2
    Kaliraj S, Chandrasekar N, Magesh NS (2014) Morphometric analysis of the river Thamirabarani Sub-Basin in Kanyakumari District, South West Coast of Tamil Nadu, India, using remote sensing and GIS. Environ Earth Sci 73:7375–7401CrossRef
    Keller EA, Pinter N (2002) Active tectonics: earthquakes and landscape. Prentice-Hall, Upper Saddle River, p 362
    Keller E, Gurrola L, Tierney T (1999) Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding. Geology 27:515–518CrossRef
    Kirby E, Whipple X (2001) Quantifying differential rock-uplift rates via stream profile analysis. Geology 29:415–418CrossRef
    Klinger Y, Avouac JP, Dorbath L, Abou Karaki N, Tisnerat N (2000) Seismic behavior of the Dead Sea fault along Araba valley (Jordan). Geophys J Int 142:769–782CrossRef
    Knighton D (1998) Fluvial forms and processes. Edward Arnold, New York, p 380
    Kothyari G, Rastogi K (2013) Tectonic control on drainage network evolution in the Upper Narmada Valley: implication to neotectonics. Geogr J. doi:10.​1155/​2013/​325808
    Laske G, Weber M, The DESERT Working Group (2008) Lithosphere structure across the Dead Sea Transform as constrained by Rayleigh waves observed during the DESERT experiment. Geophys J Int 173:593–610CrossRef
    Mahmood A, Batool H, Waheed Z, Akhtar A, Masood A (2013) Investigation of neotectonics along Hazara Kashmir syntaxis through remote sensing and GIS analysis. Int J Recent Dev Eng Technol 1(3):61–67
    Niemi T, Ben-Avraham Z (1997) The Dead Sea: the lake and its setting. Monographs on Geology and Geophysics Press 36, Oxford University, pp 326–336
    O’Callaghan J, Mark D (1984) The extraction of drainage networks from digital elevation data. Comput. Vision Graph 28:323–344CrossRef
    Odeh T, Gloaguen R, Schirmer M, Geyer S, Rödiger T, Siebert C (2009a): Exploration of Wadi Zerka Ma’in rotational fault and its drainage pattern, Eastern of Dead Sea, by means of remote sensing, GIS and 3D geological modeling. In: Proceeding of SPIE Europe’s international symposium on remote sensing (ERS09), vol 7478, Berlin, p 11
    Odeh T, Salameh E, Schirmer M, Strauch G (2009b) Structural control of groundwater flow regimes and groundwater chemistry along the lower reaches of the Zerka River, West Jordan, using remote sensing, GIS, and field methods. Environ Geol 58:1797–1810CrossRef
    Odeh T, Gloaguen R, Schirmer M, Geyer S, Rödiger T, Siebert C (2010) Investigation of catchment areas migrations through a Sinstral and Dextral Strike Slip Faults: the case study of Zerka Ma’in and Al Hasa catchment areas, east of the Dead Sea in Jordan. In: Proceedings of the 4 ASME/WSEAS international conference on geology and seismology (GES’10), Cambridge, ISBN: 978-960- 474-160-1, pp 120–126
    Odeh T, Geyer S, Rödiger T, Siebert C, Schirmer M (2013) Groundwater chemistry of strike slip faulted aquifers: the case study of Wadi Zerka Ma’in aquifers, north east of the Dead Sea. Environ Earth Sci 70:393–406CrossRef
    Odeh T, Rödiger T, Geyer S, Schirmer M (2015) Hydrological modelling of a heterogeneous catchment using an integrated approach of remote sensing, a geographic information system and hydrologic response units: the case study of Wadi Zerka Ma’in catchment area, north east of the Dead Sea. Environ Earth Sci 73:3309–3326. doi:10.​1007/​s12665-014-3627-5 CrossRef
    Ohmori H (1993) Changes in the hypsometric curve through mountain building. Geomorphology 8:263–277CrossRef
    Phillips J, Lutz D (2008) Profile convexities in bedrock and alluvial streams. Geomorphology 102:554–566CrossRef
    Quennell AM (1956) The structural and geomorphic evolution of the Dead Sea Rift. Q J Geol Soc Lond 114:1–18CrossRef
    Ribolini A, Spagnolo M (2008) Drainage network geometry versus tectonics in the Argentera Massif (French–Italian Alps). Geomorphology 93:253–266CrossRef
    Rodríguez-Iturbe I, Rinaldo A (1997) Fractal River Basins: chance and self-organization. Cambridge University Press, New York, p 564
    Rodríguez-Iturbe I, Valdes J (1979) The geomorphologic structure of the hydrologic response. Water Resour Res 15:1409–1420CrossRef
    Saintot A, Angelier J, Chorowicz J (1999) Mechanical significance of structural patterns identified by remote sensing studies: a multiscale analysis of tectonic structures in Crimea. Tectonophysics 32:187–218CrossRef
    Salameh E, Al Farajat M (2007) The role of volcanic eruptions in blocking the drainage leading to the Dead Sea formation. Environ Geol J 52:519–527CrossRef
    Salameh E, Bannayan H (1993) Water Resources of Jordan—present status and future potentials. Friedrich Ebert Stiftung, Amman
    Shahzad F, Gloaguen R (2009a) Understanding tectonics from digital elevation model, part 1: drainage network preparation and stream profile analysis. Comput Geosci 37:250–260CrossRef
    Shahzad F, Gloaguen R (2009b) Understanding tectonics from digital elevation model, part 2: surface dynamics and basin analysis. Comput Geosci 37:261–271CrossRef
    Shahzad F, Mahmood S, Gloaguen R (2009) Drainage network and lineament analysis: an approach for Potwar Plateau (Northern Pakistan). J Mt Sci 6:14–24CrossRef
    Shtober-Zisu N, Greenbaum N, Inbar M, Flexer A (2008) Morphometric and geomorphic approaches for assessment of tectonic activity, Dead Sea Rift (Israel). Geomorphology 102:93–104CrossRef
    Sneh A (1996) The Dead Sea Rift: lateral displacement and down faulting phases. Tectonophysics 263:277–292CrossRef
    Snyder N, Whipple K, Tucker G, Merritts D (2000) Landscape response to tectonic forcing: DEM analysis of stream profiles in the Mendocino Triple junction region, Northern California. Geol Soc Am Bull 112:1250–1263CrossRef
    Sreedevi D, Sreekanth D, Khan H, Ahmed S (2012) Drainage morphometry and its influence on hydrology in an semi arid region: using SRTM data and GIS. Environ Earth Sci 70:839–848CrossRef
    Stephenson D (2003) Water resources management. Taylor and Francis, The Netherlands, p 323CrossRef
    Strahler A (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63:1117–1253CrossRef
    Street-Perrott A, Harrison P (1985) Lake levels and climate reconstruction. In: Hecht AD (ed) Paleoclimate analysis and modeling. Wiley, New York, pp 291–340
    Subramanya K (2006) Engineering hydrology. Tata McGraw-Hill, New Delhi, p 392
    Troiani F, Della M (2008) The use of the Stream Length-Gradient index in morphotectonic analysis of small catchments: a case study from Central Italy. Geomorphology 102:159–168CrossRef
    Tucker E, Slingerland L (1994) Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study. J Geophys Res 99:12229–12243CrossRef
    Van der Beek P, Champel B, Mugnier L (2002) Control of detachment dip on drainage development in regions of active fault-propagation folding. Geology 30:471–474CrossRef
    Vivoni R, Benedetto F, Grimaldi S, Eltahir E (2008) Hypsometric control on surface and subsurface runoff. Water Resour Res 44:12502–12512
    Wade AJ, Smith SJ, Black ECL, Brayshaw DJ, Holmes PAC, El-Bastawesy M, Rambeau CMC, Mithen SJ (2012) A new method for the determination of Holocene palaeohydrology. J Hydrol. doi:10.​1016/​j.​jhydrol.​2011.​10.​033
    Wang X, Yin Z (1998) A comparison of drainage networks derived from digital elevation models at two scales. J Hydrol 210:221–241CrossRef
    Whipple X (2004) Bedrock rivers and the geomorphology of active orogens. Annu Rev Earth Planet Sci 32:151–185CrossRef
    Whipple X, Tucker E (1999) Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res 104:17661–17674CrossRef
    Wilson T, Dominic J (1998) Fractal interrelationships between topography and structure. Earth Surf Proc Land 23:509–525CrossRef
    Wobus W, Whipple X, Kirby E, Snyder P, Johnson J, Spyropolou K, Crosby BT, Sheehan D (2006) Tectonics from topography: procedures, promise and pitfalls. In: Willett SD, Hovius N, Brandon MT, Fisher DM (eds) Tectonics, climate and landscape evolution. Geological Society of America Special Paper 398: Penrose Conference Series, pp 55–74
    Wood D (1996) The geomorphologic characterization of digital elevation models. PhD Dissertation, University of Leicester, UK
  • 作者单位:Taleb Odeh (1)
    Richard Gloaguen (2)
    Al-Sharifa Hind Mohammad (3)
    Mario Schirmer (4) (5)

    1. The Faculty of Natural Resources and Environment, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
    2. Remote Sensing Group, Institute for Geology, TU Freiberg, Bernhard-von-Cotta-Strasse 2, 09596, Freiberg, Germany
    3. Water, Energy and Environment Center (WEEC), The University of Jordan, Amman, 11942, Jordan
    4. Department Water Resources and Drinking Water, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
    5. Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
The geology of Jordan is characterized by fault systems with three major trends: (1) NW–SE, the oldest, (2) WNW–ESE, and (3) NNW–SSE, the youngest. The drainage network of the Wadi Zerka Ma’in catchment area, located in the middle of the Dead Sea rift, parallels these structural orientations. A regional transtensive fault, with embedded normal faults, bounds the lower and middle part of the catchment area. The topographic profile of the Zerka Ma’in River exhibits two major knickpoints where it crosses two major embedded normal faults. The second major knickpoint developed as a result of the dramatic lowering of the Lisan Lake water level, a lake that pre-dates the Dead Sea. The decreased water level triggered river incision into the clastic sandstone units of Wadi Zerka Ma’in. We performed a morphotectonic analysis study to investigate how the rock structures control the drainage network and the catchment area geomorphology. According to the transverse topographic symmetry factor (T), the catchment area is highly asymmetric. The major basin asymmetry trend is SE-oriented, parallel to the oldest set of fault systems. The catchment area displays a convex hypsometric curve indicating a very recent stage in the geomorphologic cycle. Our study indicates that the Lisan Lake catchment area shrinkage and structures growth controlled and shaped the Wadi Zerka Ma’in catchment area geomorphology. The combined use of a geographic information system (GIS) and remote sensing was shown to be very efficient in unraveling the evolution of the drainage network and catchment area geomorphology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700