An anisotropic micromechanics model for predicting the rafting direction in Ni-based single crystal superalloys
详细信息    查看全文
  • 作者:Shuang-Yu Li ; Wen-Ping Wu ; Ming-Xiang Chen
  • 关键词:Ni ; based single crystal superalloys ; Rafting ; Equivalent inclusion theory ; Stroh formalism
  • 刊名:Acta Mechanica Solida Sinica
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:32
  • 期:1
  • 页码:135-143
  • 全文大小:797 KB
  • 参考文献:1.Nabarro, F.R.N.: Rafting in superalloy. Metall. Mater. Trans. A. 27, 513–530 (1996)CrossRef
    2.Pollock, T.M., Argon, A.S.: Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates. Acta Metall. Mater. 42, 1859–1874 (1994)CrossRef
    3.Sakaguchi, M., Okazaki, M.: Fatigue life evaluation of a single crystal Ni-based superalloy, accompanying with change of microstructural morphology. Int. J. Fatigue. 29, 1959–1965 (2007)CrossRef MATH
    4.Tien, J.K., Copley, S.M.: The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals. Metall. Mater. Trans. B. 2, 215–219 (1971)CrossRef
    5.Saito, M., Aoyama, T., Hidaka, K., et al.: Concentration profiles and the rafting mechanism of Ni base superalloys in the initial stage of high temperature creep tests. Scr. Mater. 34, 1189–1194 (1996)CrossRef
    6.Zhang, Y., Wanderka, N., Schumacher, G., et al.: Phase chemistry of the superalloy SC16 after creep deformation. Acta Mater. 48, 2787–2793 (2000)CrossRef
    7.Buffiere, J.Y., Ignat, M.: A dislocation based criterion for the raft formation in nickel-based superalloys single crystals. Acta Metall. Mater. 43, 1791–1797 (1995)
    8.Yue, Z.F., Lu, Z.Z., He, J.: Rafting prediction criterion for nickel-based single crystals under multiaxial stresses and crystallographic orientation dependence of creep behaviour. Acta Metall. Sin. 35, 585–588 (1999). (in Chinese)
    9.Kundin, J., Mushongera, L., Goehler, T., et al.: Phase-field modeling of the \(\gamma ^{\prime }\) -coarsening behavior in Ni-based superalloys. Acta Mater. 60, 3758–3772 (2012)CrossRef
    10.le Graverend, J.B., Cormier, J., Gallerneau, F., et al.: A microstructure-sensitive constitutive modeling of the inelastic behavior of single crystal nickel-based superalloys at very high temperature. Int. J. Plastic. 59, 55–83 (2014)CrossRef
    11.Socrate, S., Parks, D.M.: Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys. Acta Metall. Mater. 41, 2185–2209 (1993)CrossRef
    12.Müller, L., Glatzel, U., Feller-Kniepmeier, M.: Calculation of the internal stresses and strains in the microstructure of a single crystal nickel-base superalloy during creep. Acta Metall. Mater. 41, 3401–3411 (1993)CrossRef
    13.Zhou, L., Li, S.X., Chen, C.R., et al.: Three-dimensional finite element analysis of stresses and energy density distributions around \(\gamma ^{\prime }\) before coarsening loaded in the [110]-direction in Ni-based superalloy. Mater. Sci. Eng. A. 352, 300–307 (2003)CrossRef
    14.Pineau, A.: Influence of uniaxial stress on the morphology of coherent precipitates during coarsening-elastic energy considerations. Acta Metall. 24, 559–564 (1976)CrossRef
    15.Chang, J.C., Allen, S.M.: Elastic energy changes accompanying the gamma- prime rafting in nickel-base superalloys. J. Mater. Res. 6, 1843–1855 (1991)CrossRef
    16.Miyazaki, T., Nakamura, K., Mori, H.: Experimental and theoretical investigations on morphological changes of \(\gamma ^{\prime }\) precipitates in Ni-Al single crystals during uniaxial stress-annealing. J. Mater. Res. 14, 1827–1837 (1979)
    17.Ratel, N., Bruno, G., Bastie, P., et al.: Plastic strain-induced rafting of \(\gamma ^{\prime }\) precipitates in Ni superalloys: elasticity analysis. Acta Mater. 54, 5087–5093 (2006)CrossRef
    18.Ratel, N., Bastie, P., Mori, T., et al.: Application of anisotropic inclusion theory to the energy evaluation for the matrix channel deformation and rafting geometry of \(\gamma -\gamma ^{\prime }\) Ni Superalloys. Mater. Sci. Eng. A. 505, 41–47 (2009)CrossRef
    19.Sakaguchi, M., Okazaki, M.: Micromechanics of the damage induced cellular microstructure in single crystal Ni-based superalloys. Acta Metall. Sin. 17, 361–368 (2004)
    20.Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)CrossRef
    21.Wu, W.P., Guo, Y.F., Dui, G.S., et al.: A micromechanical model for predicting the directional coarsening behavior in Ni-based superalloys. Comput. Mater. Sci. 44, 259–264 (2008)CrossRef
    22.Chen, C.R., Li, S.X., Zhang, Q.: Finite element analysis of stresses associated with transformations in magnesia partially stabilized zirconia. Mater. Sci. Eng. A. 272, 398–409 (1999)CrossRef
    23.Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Leiden (1987)CrossRef
    24.Onaka, S., Kobayashi, N., Kato, M.: Two-dimensional analysis on elastic strain energy due to a uniformly eigenstrained supercircular inclusion in an elastically anisotropic material. Mech. Mater. 34, 117–125 (2002)CrossRef
    25.Pan, E.: Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes. J. Mech. Phys. Solids. 52, 567–589 (2004)CrossRef MathSciNet MATH
    26.Ting, T.C.T.: Anisotropic Elasticity. Oxford University, Oxford (1996)MATH
  • 作者单位:Shuang-Yu Li (1)
    Wen-Ping Wu (1) (2)
    Ming-Xiang Chen (1) (2)

    1. Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, China
    2. State Key Laboratory of Water Resources & Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics, Fluids and Thermodynamics
    Engineering Fluid Dynamics
    Numerical and Computational Methods in Engineering
    Chinese Library of Science
  • 出版者:The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of
  • ISSN:1614-3116
文摘
An anisotropic micromechanics model based on the equivalent inclusion method is developed to investigate the rafting direction of Ni-based single crystal superalloys. The micromechanical model considers actual cubic structure and orthogonal anisotropy properties. The von Mises stress, elastic strain energy density, and hydrostatic pressure in different inclusions of micromechanical model are calculated when applying a tensile or compressive loading along the [001] direction. The calculated results can successfully predict the rafting direction for alloys exhibiting a positive or a negative mismatch, which are in agreement with pervious experimental and theoretical studies. Moreover, the elastic constant differences and mismatch degree of the matrix and precipitate phases and their influences on the rafting direction are carefully discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700