Automatic aortic root landmark detection in CTA images for preprocedural planning of transcatheter aortic valve implantation
详细信息    查看全文
  • 作者:Mustafa Elattar ; Esther Wiegerinck…
  • 关键词:CTA ; TAVI ; Landmarks ; Detection ; Aortic root ; Segmentation
  • 刊名:The International Journal of Cardiovascular Imaging (formerly Cardiac Imaging)
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:32
  • 期:3
  • 页码:501-511
  • 全文大小:1,409 KB
  • 参考文献:1.Nkomo VT, Gardin JM, Skelton TN et al (2006) Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011. doi:10.​1016/​S0140-6736(06)69208-8 CrossRef PubMed
    2.Stewart BF, Siscovick D, Lind BK et al (1997) Clinical factors associated with calcific aortic valve disease. J Am Coll Cardiol 29:630–634. doi:10.​1016/​S0735-1097(96)00563-3 CrossRef PubMed
    3.Lindroos M, Kupari M, Heikkilä J, Tilvis R (1993) Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol 21:1220–1225. doi:10.​1016/​0735-1097(93)90249-Z CrossRef PubMed
    4.Kamath AR, Pai RG (2008) Risk factors for progression of calcific aortic stenosis and potential therapeutic targets. Int J Angiol 17:63–70PubMedCentral PubMed
    5.Bonow RO, Carabello BA, Chatterjee K et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. J Am Coll Cardiol 48:e1–e148. doi:10.​1016/​j.​jacc.​2006.​05.​021 CrossRef PubMed
    6.Coeytaux RR, Williams JW, Gray RN, Wang A (2010) Percutaneous heart valve replacement for aortic stenosis: state of the evidence. Ann Intern Med 153:314–324. doi:10.​1059/​0003-4819-153-5-201009070-00267 CrossRef PubMed
    7.Billings FT, Kodali SK, Shanewise JS (2009) Transcatheter aortic valve implantation: anesthetic considerations. Anesth Analg 108:1453–1462. doi:10.​1213/​ane.​0b013e31819b07ce​ CrossRef PubMed
    8.Leon M, Smith C, Mack M (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. Engl J 363:1597–1607CrossRef
    9.Vahanian A, Alfieri O, Al-Attar N et al (2008) Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percu. Eur Heart J 29:1463–1470. doi:10.​1093/​eurheartj/​ehn183 CrossRef PubMed
    10.Baan J, Yong ZY, Koch KT et al (2010) Factors associated with cardiac conduction disorders and permanent pacemaker implantation after percutaneous aortic valve implantation with the Core Valve prosthesis. Am Heart J 159:497–503. doi:10.​1016/​j.​ahj.​2009.​12.​009 CrossRef PubMed
    11.Rajiah P, Schoenhagen P (2013) The role of computed tomography in pre-procedural planning of cardiovascular surgery and intervention. Insights Imaging 4:671–689. doi:10.​1007/​s13244-013-0270-8 PubMedCentral CrossRef PubMed
    12.Tops LF, Wood DA, Delgado V et al (2008) Noninvasive evaluation of the aortic root with multislice computed tomography. Implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging 1:321–330. doi:10.​1016/​j.​jcmg.​2007.​12.​006 CrossRef PubMed
    13.Delgado V, Ng ACT, Schuijf JD et al (2011) Automated assessment of the aortic root dimensions with multidetector row computed tomography. Ann Thorac Surg 91:716–723. doi:10.​1016/​j.​athoracsur.​2010.​09.​060 CrossRef PubMed
    14.Holmes DR, Mack MJ, Kaul S et al (2012) 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol 59:1200–1254. doi:10.​1016/​j.​jacc.​2012.​01.​001 CrossRef PubMed
    15.Okuyama K, Jilaihawi H, Makkar RR (2013) Leaflet length and left main coronary artery occlusion following transcatheter aortic valve replacement. Catheter Cardiovasc Interv 82:E754–E759. doi:10.​1002/​ccd.​25059 CrossRef PubMed
    16.Elattar MA, Wiegerinck EM, Planken RN et al (2014) Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation. Med Biol Eng Comput 52:611–618. doi:10.​1007/​s11517-014-1165-7 CrossRef PubMed
    17.Bertaso AG, Wong DTL, Liew GYH et al (2012) Aortic annulus dimension assessment by computed tomography for transcatheter aortic valve implantation: differences between systole and diastole. Int J Cardiovasc Imaging 28:2091–2098. doi:10.​1007/​s10554-012-0018-4 CrossRef PubMed
    18.De Heer LM, Budde RPJ, Van Prehn J et al (2012) Pulsatile distention of the nondiseased and stenotic aortic valve annulus: analysis with electrocardiogram-gated computed tomography. Ann Thorac Surg 93:516–522. doi:10.​1016/​j.​athoracsur.​2011.​08.​068 CrossRef PubMed
    19.De Heer LM, Budde RPJ, Mali WPTM et al (2011) Aortic root dimension changes during systole and diastole: evaluation with ECG-gated multidetector row computed tomography. Int J Cardiovasc Imaging 27:1195–1204. doi:10.​1007/​s10554-011-9838-x PubMedCentral CrossRef PubMed
    20.Arjmand Shabestari A, Pourghorban R, Tehrai M et al. (2013) Comparison of aortic root dimension changes during cardiac cycle between the patients with and without aortic valve calcification using ECG-gated 64-slice and dual-source 256-slice computed tomography scanners: results of a multicenter study. Int J Cardiovasc Imaging 1–10. doi: 10.​1007/​s10554-013-0217-7
    21.Gnyaneshwar R, Kumar RK, Balakrishnan KR (2002) Dynamic analysis of the aortic valve using a finite element model. Ann Thorac Surg 73:1122–1129. doi:10.​1016/​S0003-4975(01)03588-3 CrossRef PubMed
    22.Chun EJ, Il Choi S, Lim C et al (2008) Aortic stenosis: evaluation with multidetector CT angiography and MR imaging. Korean J Radiol 9:439–448. doi:10.​3348/​kjr.​2008.​9.​5.​439 PubMedCentral CrossRef PubMed
    23.Zheng Y, John M, Liao R et al (2012) Automatic aorta segmentation and valve landmark detection in C-arm CT for transcatheter aortic valve implantation. IEEE Trans Med Imaging 31:2307–2321. doi:10.​1109/​TMI.​2012.​2216541 CrossRef PubMed
    24.Waechter I, Kneser R, Korosoglou G et al (2010) Patient specific models for planning and guidance of minimally invasive aortic valve implantation. Med Image Comput Comput Assist Interv 13:526–533PubMed
    25.Dodge JT, Brown BG, Bolson EL, Dodge HT (1992) Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86:232–246. doi:10.​1161/​01.​CIR.​86.​1.​232 CrossRef PubMed
  • 作者单位:Mustafa Elattar (1)
    Esther Wiegerinck (2)
    Floortje van Kesteren (2) (3)
    Lucile Dubois (4)
    Nils Planken (3)
    Ed Vanbavel (1)
    Jan Baan (2)
    Henk Marquering (1) (3)

    1. Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
    2. Heartcenter, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
    3. Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
    4. Biomedical Engineering, Polytech Lyon, Université Claude Bernard Lyon, Villeurbanne, France
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-0743
文摘
Transcatheter aortic valve implantation is currently a well-established minimal invasive treatment option for patients with severe aortic valve stenosis. CT Angiography is used for the pre-operative planning and sizing of the prosthesis. To reduce the inconsistency in sizing due to interobserver variability, we introduce and evaluate an automatic aortic root landmarks detection method to determine the sizing parameters. The proposed algorithm detects the sinotubular junction, two coronary ostia, and three valvular hinge points on a segmented aortic root surface. Using these aortic root landmarks, the automated method determines annulus radius, annulus orientation, and distance from annulus plane to right and left coronary ostia. Validation is performed by the comparison with manual measurements of two observers for 40 CTA image datasets. Detection of landmarks showed high accuracy where the mean distance between the automatically detected and reference landmarks was 2.81 ± 2.08 mm, comparable to the interobserver variation of 2.67 ± 2.52 mm. The mean annulus to coronary ostium distance was 16.9 ± 3.3 and 17.1 ± 3.3 mm for the automated and the reference manual measurements, respectively, with a mean paired difference of 1.89 ± 1.71 mm and interobserver mean paired difference of 1.38 ± 1.52 mm. Automated detection of aortic root landmarks enables automated sizing with good agreement with manual measurements, which suggests applicability of the presented method in current clinical practice. Keywords CTA TAVI Landmarks Detection Aortic root Segmentation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700