The effect of indentation-induced microcracks on the elastic modulus of hydroxyapatite
详细信息    查看全文
  • 作者:X. Fan (1)
    E. D. Case (1) casee@egr.msu.edu
    M. J. Baumann (1)
  • 刊名:Journal of Materials Science
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:47
  • 期:17
  • 页码:6333-6345
  • 全文大小:702.5 KB
  • 参考文献:1. Kim Y, Case ED, Gaynor S (1993) J Mater Sci 28:1910. doi:
    2. Misra V, Pandey SD (2005) Bull Environ Contam Toxicol 74:725
    3. da Silva OG, da Silva EC, da Fonseca MG, Arakaki LNH, Airoldi C (2006) J Colloid Interface Sci 302:485
    4. Opre Z, Grunwaldt JD, Maciejewski M, Ferri D, Mallat T, Baiker A (2005) J Catal 230:406
    5. Jamwal N, Gupta M, Paul S (2008) Green Chem 10:999
    6. Rakap M, Ozkar S (2011) Int J Hydrogen Energy 36:7019
    7. Silva CC, Almeida AFL, De Oliveira RS, Pinheiro AG, Goes JC, Sombra ASB (2003) J Mater Sci 38:3713. doi:
    8. Silva CC, Rocha HHB, Freire FNA, Santos MRP, Saboia KDA, Goes JC, Sombra ASB (2005) Mater Chem Phys 92:260
    9. El Mhammedi MA, Achak M, Najih R, Bakasse M, Chtaini A (2009) Mater Chem Phys 115:567
    10. Mahabole MP, Aiyer RC, Ramakrishna CV, Sreedhar B, Khairnar RS (2005) Bull Mater Sci 28:535
    11. Ohtsuki C, Ichikawa Y, Shibata H, Kawachi G, Torimoto T, Ogata S (2010) J Mater Sci Mater Med 21:1225
    12. Owada H, Yamashita K, Umegaki T, Kanazawa T, Nagai M (1989) Solid State Ion 35:401
    13. Hench LL (1991) J Am Ceram Soc 74:1487
    14. Burg KJL, Porter S, Kellam JF (2000) Biomaterials 21:2347
    15. Karageorgiou V, Kaplan D (2005) Biomaterials 26:5474
    16. Martin HC, Carey GF (1973) Introduction to finite element analysis. McGraw-Hill, New York
    17. Smith DT, Wei L (1995) J Am Ceram Soc 78:1301
    18. Perera FH, Martinez-Vazquez FJ, Miranda P, Ortiz AL, Pajares A (2010) Ceram Int 36:1929
    19. Chotard T, Soro J, Lemercier H, Huger M, Gault C (2008) J Eur Ceram Soc 28:2129
    20. Patapy C, Gault C, Huger M, Chotard T (2009) J Eur Ceram Soc 29:3355
    21. Yousef SG, Rodel J, Fuller ER Jr, Zimmermann A, El-Dasher BS (2005) J Am Ceram Soc 88:2809
    22. Case ED, Glinka C (1984) J Mater Sci 19:2962. doi:
    23. Wang J, Shaw LL (2009) Biomaterials 30:6565
    24. Rokhlin SI, Chu YC, Hefetz M (1993) Ceram Eng Sci Proc 14:454
    25. Diaz LA, Torrecillas R, Simonin F, Fantozzi G (2008) J Eur Ceram Soc 28:2853
    26. Evans AG, Fu Y (1986) In: Evans AG (ed) Ceramic containing systems. Noyes Press, Park Ridge
    27. Kratschmer T, Aneziris CG (2011) Int J Appl Ceram Technol 8:398
    28. Hubner H, Jillek W (1977) J Mater Sci 12:117. doi:
    29. Meschke F, Kolleck A, Schneider GA (1997) J Eur Ceram Soc 17:1143
    30. Ota T, Yamai I, Takahashi J (1986) Adv Ceram Mater 1:371
    31. Hilpert T, Ivers-Tiffee E (2004) Solid State Ion 175:471
    32. Hasselman DPH (1993) J Am Ceram Soc 76:2180
    33. Deroo F, Kim JY (2010) J Acoust Soc Am 127:3315
    34. Kimura T, Miyamoto S, Yamaguchi T (1990) J Am Ceram Soc 73:127
    35. Morito K, Suzuki T (2005) J Appl Phys 97:104
    36. Rice RW (2002) J Eur Ceram Soc 22:1411
    37. Lee SK, Moretti JD, Readey MJ (2002) J Am Ceram Soc 85:279
    38. Collin M, Rowcliffe D (2002) J Eur Ceram Soc 22:435
    39. Wilson BA, Case ED (1997) J Mater Sci 32:3163. doi:
    40. Wilson BA, Case ED (1999) J Mater Sci 34:247. doi:
    41. Wilson BA, Lee KY, Case ED (1997) Mater Res Bull 32:1607
    42. Kese KO, Li ZC, Bergman B (2006) J Eur Ceram Soc 26:1013
    43. Braun LM, Bennison SJ, Lawn BR (1992) J Am Ceram Soc 75:3049
    44. Salomonson J, Zeng K, Rowcliffe D (1996) Acta Mater 44:543
    45. Kim JW, Bhowmick S, Hermann I, Lawn BR (2006) J Biomed Mater Res B 79:58
    46. Budiansky B, O’Connell RJ (1976) Int J Solids Str 12:81
    47. Salganik RL (1974) Mech Solids 8:135
    48. Hoenig A (1979) Int J Solids Str 15:137
    49. Laws N, Brockenbrough JR (1987) Int J Solids Str 23:1247
    50. Hasselman DPH, Singh JP (1979) Am Ceram Soc Bull 58:856
    51. Walsh JB (1965) J Geophys Res 70:5249
    52. Case ED (1984) J Mater Sci 19:3702. doi:
    53. Case ED, Kim Y (1993) J Mater Sci 28:1885. doi:
    54. Kim Y, Case ED (1993) J Mater Sci 28:1901. doi:
    55. Dorre E, Hubner H (1984) Alumina: processing, properties, and applications. Springer, Berlin
    56. Case ED, Smyth JR, Monthei V (1981) J Am Ceram Soc 64:C24
    57. Migliori A, Sarrao JL (1997) Resonant ultrasound spectroscopy applications to physics, materials measurements and nondestructive evaluation. Wiley-Interscience, Hoboken
    58. Ren F, Case ED, Morrison A, Tafesse M, Baumann MJ (2009) Philos Mag 89:1163
    59. Schmidt RD, Ni JE, Case ED, Sakamoto JS, Kleinow DC, Wing BL, Stewart RC, Timm EJ (2010) J Alloy Compd 504:303
    60. Ni JE, Case ED, Khabir KN, Stewart RC, Wu CI, Hogan TP, Timm EJ, Girard SN, Kanatzidis MG (2010) Mater Sci Eng B 170:58
    61. Zhang L, Rogl G, Grytsiv A, Puchegger S, Koppensteiner J, Spieckermann F, Kabelka H, Reinecker M, Rogl P, Schranz W, Zehetbauer M, Carpenter MA (2010) Mater Sci Eng B 170:26
    62. Gladden JR, Li G, Adebisi R, Firdosy S, Caillat T, Ravi V (2010) Phys Rev B 82:045209
    63. Ni JE, Ren F, Case ED, Timm EJ (2009) Mater Chem Phys 118:459
    64. Zhang Z, Keppens V, Senkov ON, Miracle DB (2007) Mater Sci Eng A 471:151
    65. Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics, 2nd edn. Wiley, New York
    66. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533
    67. Spriggs RM (1961) J Am Ceram Soc 44:628
    68. Liu DM (1998) Ceram Int 24:441
    69. Arita IH, Castano VM, Wilkinson DS (1995) J Mater Sci Mater Med 6:19
    70. He LH, Standard OC, Huanga TTY, Latella BA, Swain MV (2008) Acta Biomater 4:577
    71. Landolt H, Bornstein R (1979) Elektrische, Piezoelektrische, Pyroelektrische, Piezooptische, Elektrooptische Konstanten und Nichtlineare Dielektrische Suszeptibilitaten, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Gruppe III, Bd. 11. Springer, Berlin
    72. Hoepfner TP, Case ED (2004) Mater Lett 58:489
    73. Dey A, Mukhopadhyay AK (2011) Int J Appl Ceram Technol 8:572
    74. Wang Q, Ji SC (2009) J Geophys Res-Earth 114:B09202
    75. Rice RW (1998) Porosity of ceramics. Marcel Dekker, Inc., New York
    76. Jang BK, Matsubara H (2005) Mater Lett 59:3462
    77. Ren F, Case ED, Timm EJ, Schock HJ (2007) Philos Mag 87:4907
    78. Krstic Z, Krstic VD (2008) J Eur Ceram Soc 28:1723
    79. Ren F, Case ED, Ni JE, Timm EJ, Lara-Curzio E, Trejo RM, Lin CH, Kanatzidis MG (2009) Philos Mag 89:143
    80. Zhou J, Li Z, Zhu R, Li Y, Zhang Z (2008) J Mater Process Technol 197:325
    81. Dole SL, Hunter O Jr, Calderwood FW, Bray DJ (1978) J Am Ceram Soc 61:486
    82. Case ED, Smyth JR, Hunter O Jr (1981) J Nucl Mater 102:135
    83. Manning WR, Hunter O Jr (1973) J Am Ceram Soc 56:602
    84. Suchomel RR, Hunter O Jr (1976) J Am Ceram Soc 59:149
  • 作者单位:1. Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
The presence of microcracks in materials affects a wide range of mechanical properties including elastic modulus, Poisson’s ratio, fracture strength, and fracture toughness. The microcrack-induced reductions of the Young’s modulus, E, and Poisson’s ratio, υ, are functions of the size, geometry, and number density of microcracks. In this study, an array of Vickers indentation-induced microcracks was placed on the surfaces of two hydroxyapatite (HA) specimens with totals of 391 and 513 indentations per specimen. This study tests the validity of theoretical studies of microcrack damage-induced changes in E and υ, where the changes are expressed either by (i) the volumetric crack number density, N and (ii) the crack damage parameter, ε. All elasticity measurements were done via resonant ultrasound spectroscopy. For both the HA specimens included in the study and alumina specimens indented in an earlier study [J Mater Sci 38:1910. doi: 10.1007/BF00595764, 1], E and υ decreased approximately linearly with increasing microcrack damage. The slopes of the E and υ versus N and ε are also computed and compared to the available theoretical models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700