Straight Construction of Non-Interactive Quantum Bit Commitment Schemes from Indistinguishable Quantum State Ensembles
详细信息    查看全文
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2015
  • 出版时间:2015
  • 年:2015
  • 卷:9477
  • 期:1
  • 页码:121-133
  • 全文大小:240 KB
  • 参考文献:1.Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin flipping. In: Proc. of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179, 1984
    2.Chailloux, A., Kerenidis, I.: Optimal bounds for quantum bit commitment. In: Proceedings of the FOCS 2011, pp. 354–362 (2011)
    3. Damgård, I.B., Fehr, S., Renner, R.S., Salvail, L., Schaffner, C.: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007) CrossRef
    4.Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: Proceedings of the FOCS 2005, pp. 449–458 (2005)
    5.Danan, A.: Vaidman., L.: Practical quantum bit commitment protocol. Quantum Inf. Process. 11, 769–775 (2011)MathSciNet CrossRef
    6. Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 300. Springer, Heidelberg (2000) CrossRef
    7.Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)CrossRef
    8.M. Kada, H. Nishimura, and T. Yamakami. The efficiency of quantum identity testing of multiple states. J. Phys. A: Math. Theor. 41 (2008) article no. 395309
    9.Kawachi, A., Koshiba, T., Nishimura, H., Yamakami, T.: A quantum trapdoor one-way function that relies on the hardness of the graph automorphism problem. Poster Presentation, ERATO Conference on Quantum Information Science (EQIS 2003), Kyoto (2003). See http://​qci.​is.​s.​u-tokyo.​ac.​jp/​qci/​eqis03/​program/​index.​html#ListOfPosters
    10.Kawachi, A., Koshiba, T., Nishimura, H., Yamakami, T.: Computational indistinguishability between quantum states and its cryptographic application. J. Crypt. 25, 528–555 (2012)MATH MathSciNet CrossRef
    11.Koshiba, T., Odaira, T.: Non-interactive statistically-hiding quantum bit commitment from any quantum one-way function. Available at arXiv:​1102.​3441v1 , 2011
    12.Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)CrossRef
    13.Spekkens, R. W., Rudolph, T.: Degrees of concealment and bindingness in quantum bit commitment protocols. Phys. Rev. A, 65 (2001) article no. 012310
    14.Yamakami, T.: A complete version of this current paper. arXiv:​1309.​0436
  • 作者单位:Tomoyuki Yamakami (16)

    16. Department of Information Science, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
  • 丛书名:Theory and Practice of Natural Computing
  • ISBN:978-3-319-26841-5
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
We propose two efficient quantum schemes performing quantum bit commitment, which is a simple cryptographic primitive involved with two parties, called a committer and a verifier. Our schemes are non-interactive with no supplemental shared information and they are built directly from two efficiently generated ensembles of reduced quantum states. The security conditions of our schemes come from an indistinguishability assumption of those ensembles. The first scheme achieves perfect hiding and computational binding, whereas the second scheme does computational hiding and statistical binding. It is known that the computational hardness of distinguishing between those two ensembles implies the existence of quantum one-way functions and that the existence of such functions leads to quantum bit commitment. Nonetheless, our schemes merit the simple and direct construction of quantum bit commitment schemes from those ensembles without bypassing the construction of quantum one-way functions but explicitly by exploiting specific features of the ensembles, which are interesting in their own right.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700