Induced fit docking, pharmacophore modeling, and molecular dynamic simulations on thiazolidinedione derivatives to explore key interactions with Tyr48 in polyol pathway
详细信息    查看全文
  • 作者:Manga Vijjulatha (1)
    Yamini Lingala (1)
    RaviRaja Tejaswi Merugu (1)

    1. Molecular Modeling and Medicinal Chemistry Group
    ; Dept. of Chemistry ; University College of Science ; Osmania University ; Hyderabad ; 500-007 ; India
  • 关键词:ALR ; aldose reductase ; Diabetes mellitus ; IFD ; induced fit docking ; MD ; molecular dynamics ; Pharmacophore modeling ; PLS ; Partial least square analysis ; Polyol pathway
  • 刊名:Journal of Molecular Modeling
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:20
  • 期:7
  • 全文大小:2,635 KB
  • 参考文献:1. Brownlee, M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414: pp. 813-20 CrossRef
    2. Koukoulitsa, C, Zika, C, Geromichalos, GD, Demopoulos, VJ, Skaltsa, H (2006) Evaluation of aldose reductase inhibition and docking studies of some secondary metabolites isolated from Origanum vulgare L. ssp. Hirtum Bioorg Med Chem 14: pp. 1653-59 CrossRef
    3. Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782鈥?7
    4. International Diabetes Federation (2011) Diabetes Atlas (5th ed). Retrived from http://www.idf.org/diabetesatlas/5e/the-global-burden
    5. Calcutt, NA, Freshwater, JD, Mizisin, AP (2004) Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia 47: pp. 718-24 CrossRef
    6. Cameron, NE, Cotter, MA, Basso, M, Hohman, TC (1997) Comparison of the effects of inhibitors of aldose reductase and sorbitol dehydrogenase on neurovascular function, nerve conduction and tissue polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia 40: pp. 271-81 CrossRef
    7. Hotta, N (1995) New approaches for treatment in diabetes: aldose reductase inhibitors. Biomed Pharmacother 49: pp. 232-43 CrossRef
    8. Ishii, H, Tada, H, Isogai, S (1998) An aldose reductase inhibitor prevents glucose-induced increase in transforming growth factor-尾 and protein kinase C activity in cultured human mesangial cells. Diabetologia 41: pp. 362-64 CrossRef
    9. Kasuya, Y, Ito, M, Nakamura, J, Hamada, Y, Nakayama, M, Chaya, S, Komori, T, Naruse, K, Nakashima, E, Kato, K, Koh, N, Hotta, N (1999) An aldose redutase inhibitor prevents the intimal thickening in coronary arteries of galactose-fed beagle dogs. Diabetologia 42: pp. 1404-09 CrossRef
    10. Petrash, JM (2004) All in the family: aldose reductase and closely related aldo-keto reductases. Cell Mol Life Sci 61: pp. 737-49 CrossRef
    11. Settimo, FD, Primofiore, G, Motta, CL, Salerno, S, Novellino, E, Greco, G, Lavecchia, A, Laneri, S, Boldrini, E (2005) Spirohydantoin derivatives of thiopyrano [2,3-b] pyridin-4 (4H)-one as potent in vitro and in vivo aldose reductase inhibitors. Bioorg Med Chem 13: pp. 491-99 CrossRef
    12. El-Kabbani, O, Ruiz, F, Darmanin, C, Chung, RPT (2004) Aldose reductase structures: implications for mechanism and inhibition. Cell Mol Life Sci 61: pp. 750-762 CrossRef
    13. Howard, EI, Sanishvili, R, Cachau, RE, Mitschler, A, Chevrier, B, Barth, P, Lamour, V, Zandt, M, Sibley, E, Bon, C, Moras, D, Schneider, TR, Joachimiak, A, Podjarny, A (2004) Ultrahigh resolution drug design I: details of interactions in human aldose reductase鈥搃nhibitor complex at 0.66 A. Proteins Struct Funct Genet Bioinforma 55: pp. 792-804 CrossRef
    14. Gabbay, KH (1973) The sorbitol pathway and the complications of diabetes. New Engl J Med 288: pp. 831-36 CrossRef
    15. Blakeley, MP, Ruiz, F, Cachau, R, Hazemann, I, Meilleur, F, Mitschler, A, Ginell, S, Afonine, P, Ventura, ON, Cousido-Siah, A, Haertlein, M, Joachimiak, A, Myles, D, Podjarny, A (2008) Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase. Proc Natl Acad Sci U S A 105: pp. 1844-48 CrossRef
    16. Fern谩ndez, M, Caballero, J, Helguera, AM, Castro, EA, Gonz谩lez, MP (2005) Quantitative structure鈥揳ctivity relationship to predict differential inhibition of aldose reductase by flavonoid compounds. Bioorg Med Chem 13: pp. 3269-77 CrossRef
    17. Hu, L, Chen, G, Chau, RMW (2006) A neural networks-based drug discovery approach and its application for designing aldose reductase inhibitors. J Mol Graph Model 24: pp. 244-53 CrossRef
    18. Prabhakar, YS, Gupta, MK, Roy, N, Venkateswarlu, Y (2006) A high dimensional QSAR study on the aldose reductase inhibitory activity of some flavones: topological descriptors in modeling the activity. J Chem Inf Model 46: pp. 86-92 CrossRef
    19. Ko, K, Won, Y (2005) Quantitative structure and aldose reductase inhibitory activity relationship of 1,2,3,4-tetrahydropyrrolo [1,2-a] pyrazine-4-spiro-3鈥?pyrrolidine-1,2鈥?3,5鈥?tetrone derivatives. Bioorg Med Chem 13: pp. 1445-52 CrossRef
    20. Ko, K, Won, H, Won, Y (2006) Quantitative structure鈥揳ctivity relationship of spirosuccinimide type aldose reductase inhibitors diminishing sorbitol accumulation in vivo. Bioorg Med Chem 14: pp. 3090-97 CrossRef
    21. Bruno, G, Costantino, L, Curinga, C, Maccari, R, Monforte, F, Nicol贸, F, Ottan脿, R, Vigorita, MG (2002) Synthesis and aldose reductase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorg Med Chem 10: pp. 1077-84 CrossRef
    22. Maccari, R, Ottan脿, R, Ciurleo, R, Vigorita, MG, Rakowitz, D, Steindl, T, Langer, T (2007) Evaluation of in vitro aldose redutase inhibitory activity of 5-arylidene-2, 4-thiazolidinediones. Bioorg Med Chem Lett 17: pp. 3886-93 CrossRef
    23. Maccari, R, Ottan脿, R, Curinga, C, Vigorita, MG, Rakowitz, D, Steindl, T, Langer, T (2005) Structure鈥揳ctivity relationships and molecular modelling of 5-arylidene-2,4-thiazolidinediones active as aldose reductase inhibitors. Bioorg Med Chem 13: pp. 2809-23 CrossRef
    24. Rakowitz, D, Maccari, R, Ottan脿, R, Vigorita, MG (2006) In vitro aldose reductase inhibitory activity of 5-benzyl-2, 4-thiazolidinediones. Bioorg Med Chem 14: pp. 567-74 CrossRef
    25. Sambasivarao, SV, Soni, LK, Gupta, AK, Hanumantharao, P, Kaskhedikar, SG (2006) Quantitative structure鈥揳ctivity analysis of 5-arylidene-2,4-thiazolidinediones as aldose reductase inhibitors. Bioorg Med Chem Lett 16: pp. 512-20 CrossRef
    26. Abhinit, M, Ghodke, M, Pratima, NA (2009) Exploring potential of 4-thiazolidinone: a brief review. Inter J Phar and Pharceu Sci 1: pp. 47-64
    27. OMoore-Sullivan, TM, Prins, JB (2002) Thiazolidinediones and type 2 diabetes: new drugs for an old disease. Med J Aust 176: pp. 381-6
    28. Pan, HJ, Lin, Y, Chen, YE, Vance, DE, Leiter, EH (2006) Adverse hepatic and cardiac responses to rosiglitazone in a new mouse model of type 2 diabetes: relation to dysregulated phosphatidylcholine metabolism. Vasc Pharmacol 45: pp. 65-71 CrossRef
    29. Cromlish, JA, Flynn, TG (1983) Purification and characterization of two aldose reductase isoenzymes from rabbit muscle. J Biol Chem 256: pp. 3416-3424
    30. Sharma, SR, Sharma, N (2008) Epalrestat, an aldose reductase inhibitor, in diabetic neuropathy: an Indian perspective. Ann Indian Acad Neurol 11: pp. 231-235 CrossRef
    31. Zhu C (2013) In: Oluwafemi Oguntibeju (ed.) Aldose reductase inhibitors as potential therapeutic drugs of diabetic complications, diabetes mellitus鈥攊nsights and perspectives. DOI:10.5772/54642 .
    32. Dixon, SL, Smondyrev, AM, Knoll, EH, Rao, SN, Shaw, DE, Friesner, RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20: pp. 647-71 CrossRef
    33. Schr枚dinger (2012) Ligprep, version 2.3. Schr枚dinger LLC, New York
    34. Jorgensen, WL, Maxwell, DS, Tirado-Rives, J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118: pp. 11225-36 CrossRef
    35. Magrane M, UniProt consortium, (2011) UniProt Knowledgebase: a hub of integrated protein data Database, 2011
    36. Johnson, M, Zaretskaya, I, Raytselis, Y, Merezhuk, Y, McGinnis, S, Madden, TL (2008) NCBI BLAST: a better web interface. Nucl Acids Res 25: pp. W5-W9 CrossRef
    37. Ramu, C, Sugawara, H, Koike, T, Lopez, R, Gibson, TJ, Higgins, DG, Thompson, JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: pp. 3497-500 CrossRef
    38. Marti-Renom, MA, Stuart, AC, Fiser, A, Sanchez, R, Melo, F, Sali, A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29: pp. 291-325 CrossRef
    39. Sali, A, Blundell, TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: pp. 779-815 CrossRef
    40. Laskowski, RA, Mac Arthur, MW, Moss, DS, Thornton, JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26: pp. 283-91 CrossRef
    41. Eisenberg, D, L眉thy, R, Bowie, JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277: pp. 396-404 CrossRef
    42. Wiederstein, M, Sippl, MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35: pp. W407-W410 CrossRef
    43. Sali, A, Kuriyan, J (1999) Challenges at the frontiers of structural biology. Trends Cell Biol 12: pp. M20-M24 CrossRef
    44. Rarey, M, Kramer, B, Lengauer, T, Kleb, GA (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261: pp. 470-89 CrossRef
    45. Schr枚dinger (2012) Glide, version 5.5. Schr枚dinger LLC, New York
    46. Leach, R (1996) Molecular modelling, principles and applications. Harlow, Essex, England, Longman
    47. Schr枚dinger (2009) Prime, version 2.1. Schr枚dinger LLC. New York, NY
    48. Tarle, I, Borhani, DW, Wilson, DK, Quiochol, FA, Petrash, JM (1993) Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110. J Biol Chem 268: pp. 25687-93
    49. Friesner, RA, Banks, JL, Murphy, RB, Halgren, TA, Klicic, JJ, Mainz, DT, Repasky, MP, Knoll, EH, Shelly, M, Perry, JK, Shaw, DE, Francis, P, PS, S k (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem 47: pp. 1739-49 CrossRef
    50. Yamini, L, Vijjulatha, M (2008) Inhibitors of human dihydrofolate reductase: a computational design and docking studies Using glide. E J Chem 5: pp. 263-70 CrossRef
    51. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein鈭抣igand complexes. J Med Chem 49:6177鈥?6
    52. Hess, B, Kutzner, C, Spoel, DV, Lindahl, E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4: pp. 435-47 CrossRef
    53. Spoel, DV, Lindahl, E, Hess, B, Groenhof, G, Mark, AE, Berendsen, HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26: pp. 1701-18 CrossRef
    54. Sch眉ttelkopf, AW, Aalten, DMF (2004) PRODRG: a tool for high-throughput crystallography of protein鈥搇igand complexes. Acta Crystallogr D60: pp. 1355-63
    55. Oostenbrink, C, Villa, A, Mark, AE, Gunsteren, WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 13: pp. 1656-76 CrossRef
    56. Gunsteren WFV, Billeter SR, Eising AA, Hunenberger PH, Kruger P, Mark AE, Scott WRP, Tironi IG, 鈥淏iomolecular Simulation: The GROMOS96 Manual and User Guide.鈥?VdF: Hochschulverlag AG an der ETH Zurich and BIOMOS b.v, Zurich, Gronigen (1996). ISBN 3 7281 2422 2.
    57. Darden, T, York, D, Pedersen, L (1993) Particle mesh Ewald: An N-log (N) method for Ewald sums in large systems. J Chem Phys 98: pp. 10089-92 CrossRef
    58. Essmann, U, Perera, L, Berkowitz, ML, Darden, T, Lee, H, Pedersen, H (1995) A smooth particle mesh Ewald method. J Chem Phys 103: pp. 8577-93 CrossRef
    59. Berendsen, HJC, Postma, JP, Gunsteren, WFV, DiNola, A, Haak, JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: pp. 3684-90 CrossRef
    60. Berendsen, HJC, Grigera, JR, Straatsma, TP (1987) The missing term in effective pair potentials. J Phys Chem 91: pp. 6269-71 CrossRef
    61. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33鈥?8
    62. Mercader AG, Pomilio AB (2012) 2D- and 3D-QSAR studies of flavonoids, biflavones and chalcones: antiviral, antibacterial, antifungal, and antimycobacterial activities. Anti-Infect Agents 10:41鈥?4
    63. Pasha, FA, Muddassar, M, Jung, H, Yang, BS, Lee, C, Oh, JS, Cho, SJ, Cho, H (2008) QM and pharmacophore based 3D-QSAR of MK886 analogues against mPGES-1. Bull Korean Chem Soc 29: pp. 647-55 CrossRef
    64. Yadav, DK, Khan, F, Negi, AS (2012) Pharmacophore modeling, molecular docking, QSAR, and in silico ADMET studies of gallic acid derivatives for immunomodulatory activity. J Mol Model 18: pp. 2513-25 CrossRef
    65. Colovos, C, Yeates, TO (1993) Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci 2: pp. 1511-19 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
To obtain a scientific thought and expedition to explore key interactions with Tyr48 in aldose reductase (ALR), combined study of pharmacophore modeling, induced fit docking, and dynamics studies were performed on ALR. A stereo chemically and energetically valid model of ALR-NADP+ complex was developed using homology modeling technique. Statistically a significant five point pharmacophore model was designed on a set of 54 thiazolidinedione derivatives with good external and internal predictive ability. Rigid and induced fit docking protocols were applied on ALR protein for both with and without NADP+ cofactor to identify a suitable binding mode that facilitates the key hydrogen bond interactions with Tyr48. Docking of thiazolidinedione derivatives into ALR-NADP+ complex gave more promising results by reducing false positive binding of inhibitors into the co-factor binding site. Structural changes within Try48 and Asp43 during the binding process in enzyme inhibitor complex were analyzed using molecular dynamics (MD) simulations. The results obtained from dynamic simulations emphasized the role of Tyr48 in maintaining inter or intra molecular hydrogen bond interaction with the protein or inhibitor respectively. New molecules were designed and checked for their binding interactions and showed improved results compared to existing thiazolidinediones derivatives. Hence, these combined protocols will be helpful and cooperative to design and optimize molecules with better inhibitory activity against the biologically active target. Figure Homology modeling, induced fit docking, dynamics, and pharmacophore modeling on thiazolidinone derivatives to explore the catalytic role of Tyr48 in polyol pathway. Role of Tyr48, the key amino acid in polyol pathway was exemplified in a pictographic representation to give evidence for the results obtained in molecular modeling studies

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700