Molecular modeling study of the induced-fit effect on kinase inhibition: the case of fibroblast growth factor receptor 3 (FGFR3)
详细信息    查看全文
  • 作者:Yan Li ; Michel Delamar ; Patricia Busca…
  • 关键词:Targeted molecular dynamics ; FGFR3 ; Tyrosine kinase ; DFGout ; Inactivation process ; Conformational change ; Molecular docking ; Induced ; fit effect
  • 刊名:Journal of Computer-Aided Molecular Design
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:29
  • 期:7
  • 页码:619-641
  • 全文大小:3,120 KB
  • 参考文献:1.Mannig G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912-934View Article
    2.Hanks SK (2003) Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol 4:111View Article
    3.Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309-15View Article
    4.Zuccotto F, Ardini E, Casale E, Angiolini M (2010) Through the “gatekeeper door- exploiting the active kinase conformation. J Med Chem 53:2681-694View Article
    5.Shan Y, Seeliger MA, Eastwood MP, Frank F, Xu H, Jensen M?, Dror RO, Kuriyan J, Shaw DE (2009) A conserved protonation-dependent switch controls drug binding in the Abl kinase. Proc Natl Acad Sci USA 106:139-44View Article
    6.Johnson LN, Lowe ED, Noble ME, Owen D (1998) The eleventh Datta lecture. The structural basis for substrate recognition and control by protein kinases. FEBS Lett 430:1-1View Article
    7.Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 209:275-82View Article
    8.Lin Y-L, Roux B (2013) Computational analysis of the binding specificity of Gleevec to Abl, c-Kit, Lck, and c-Src tyrosine kinases. J Am Chem Soc 135:14741-4753View Article
    9.Lin Y-L, Meng Y, Jiang W, Roux B (2013) Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc Natl Acad Sci USA 110:1664-669View Article
    10.Lin Y-L, Meng Y, Huang L, Roux B (2014) Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity. J Am Chem Soc 136:14753-4762View Article
    11.Shukla D, Meng Y, Roux B, Pande VS (2014) Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat Commun 5:3397View Article
    12.Levinson NM, Kuchment O, Shen K, Young Ma, Koldobskiy M, Karplus M, Cole Pa, Kuriyan J (2006) A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol 4:e144View Article
    13.Rousseau F, El Ghouzzi V, Delezoide AL, Legeai-Mallet L, Le Merrer M, Munnich A, Bonaventure J (1996) Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TDI). Hum Mol Genet 5:509-12View Article
    14.Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252-54View Article
    15.Le Merrer M, Rousseau F, Legeai-Mallet L, Landais JC, Pelet A, Rozet JM, Bonaventure J, Sanak M, Weissenbach J, Stoll C, Munnich A, Maroteaux P (1994) A gene for achondroplasia–hypochondroplasia maps to chromosome 4p. Nat Genet 6:318-21View Article
    16.Tanaka N, Katsuma N, Horikawa R, Tanaka T (2003) The comparison of the effects of short-term growth hormone treatment in patients with achondroplasia and with hypochondroplasia. Endocrinol J 50:69-5
    17.Yasui N, Kawabata H, Kojimoto H, Ohno H, Matsuda S, Araki N, Shimomura Y, Ochi T (1997) Lengthening of the lower limbs in patients with achondroplasia and hypochondroplasia. Clin Orthop Relat Res 344:298-06View Article
    18.Tak-Tak L, Barbault F, Maurel F, Busca P, Le Merrer Y (2011) Synthesis of purin-2-yl and purin-6-yl-aminoglucitols as C-nucleosidic ATP mimics and biological evaluation as FGFR3 inhibitors. Eur J Med Chem 46:1254-262View Article
    19.Jonquoy A, Mugniery E, Benoist-Lasselin C, Kaci N, Le Corre L, Barbault F, Girard A-L, Le Merrer Y, Busca P, Schibler L, Munnich A, Legeai-Mallet L (2012) A novel tyrosine kinase inhibitor restores chondrocyte differentiation and promotes bone growth in a gain-of-function FGFR3 mouse model. Hum Mol Genet 21:841-51View Article
    20.Han S, Mistry A, Chang JS, Cunningham D, Criffor M, Bonnette PC, Wang H, Chrunyk BA, Aspnes GE, Walker DP, Brosius AD, Buckbinder L (2009) Structural characterization of proline-rich tyrosine kinase 2 (PYK2) reveals a unique DFG-out conformation and enables inhibitor design. J Biol Chem 8:13193-3201View Article
    21.Vogtherr M, Saxena K, Hoelder S, Grimme S, Betz M, Schieborn U, Pescatore B, Robin M, Delarbe L, Langer T, Wendt KU, Schwalbe H (2006) NMR characterization of kinase p38 dynamics in free and ligand bound form. Angew Chem Int Ed 45:993-97View Article
    22.Schr?dinger: Maestro suite 2011. LLC New York, NY (2011)
    23.Wang J, Wolf R, Caldwell J, Kollman P, Case D (2004) Development and testing of a general amber force field. J Comput Chem 25:1157-174View Article
    24.Case D, Darden T, Cheatham T, Simmerling C, Wang J, Duke L, Luo R, Crowley M, Walker R, Zhang W, Merz K, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvary I, Wong K, Paesani F, Vanicek J, Wu X, Brozell S, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Gui G, Mathews D, Seetin M, et al (2010) AMBER v11. 2010
    25.Bocharov EV, Lesovoy DM, Goncharuk SA, Goncharuk MV, Hristova K, Arseniev AS (2013) Structure of FGFR3 transmembrane domain di
  • 作者单位:Yan Li (1) (2)
    Michel Delamar (2)
    Patricia Busca (3)
    Guillaume Prestat (3)
    Laurent Le Corre (3)
    Laurence Legeai-Mallet (4)
    RongJing Hu (5)
    Ruisheng Zhang (5)
    Florent Barbault (2)

    1. Department of Chemistry, Lanzhou University, Lanzhou, 730000, Gansu, People’s Republic of China
    2. ITODYS, UMR CNRS 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue J-A. de Ba?f, 75013, Paris, France
    3. UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
    4. INSERM U781, Institut Imagine, H?pital Necker-Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, 156 rue Vaugirard, Paris, France
    5. School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, Gansu, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Computer Applications in Chemistry
    Animal Anatomy, Morphology and Histology
  • 出版者:Springer Netherlands
  • ISSN:1573-4951
文摘
Tyrosine kinases are a wide family of targets with strong pharmacological relevance. These proteins undergo large-scale conformational motions able to inactivate them. By the end of one of these structural processes, a new cavity is opened allowing the access to a specific type of inhibitors, called type II. The kinase domain of fibroblast growth factor receptor 3 (FGFR3) falls into this family of kinases. We describe here, for the first time, its inactivation process through target molecular dynamics. The transient cavity, at the crossroad between the DFGout and Cα helix out inactivation is herein explored. Molecular docking calculations of known ligands demonstrated that type II inhibitors are able to interact with this metastable transient conformation of FGFR3 kinase. Besides, supplemental computations were conducted and clearly show that type II inhibitors drive the kinase inactivation process through specific stabilization with the DFG triad. This induced-fit effect of type II ligands toward FGFR3 might be extrapolated to other kinase systems and provides meaningful structural information for future drug developments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700