Preclinical testing of selective Aurora kinase inhibitors on a medullary thyroid carcinoma-derived cell line
详细信息    查看全文
  • 作者:Chiara Tuccilli ; Enke Baldini ; Natalie Prinzi ; Stefania Morrone…
  • 关键词:TT cell line ; Medullary thyroid cancer ; Aurora kinase inhibitors ; Cell cycle ; AZD1152 ; MLN8237
  • 刊名:Endocrine
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:52
  • 期:2
  • 页码:287-295
  • 全文大小:1,417 KB
  • 参考文献:1.Y.W. Ke, Z. Dou, J. Zhang, X.B. Yao, Function and regulation of Aurora/IpI1p kinase family in cell division. Cell Res. 13, 69–81 (2003)CrossRef PubMed
    2.M. Carmena, W.C. Earnshaw, The cellular geography of Aurora kinases. Nat. Rev. 4, 842–854 (2003)CrossRef
    3.J.R. Bischoff, G.D. Plowman, The Aurora/IpI1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol. 9, 454–459 (1999)CrossRef PubMed
    4.M. Kimura, Y. Matsuda, T. Yoshioka, Y. Okano, Cell cycle-dependent expression and centrosome localization of a third human Aurora/IpI1-related protein kinase, AIK3. J. Biol. Chem. 274, 7334–7340 (1999)CrossRef PubMed
    5.C.J. Tang, C.Y. Lin, T.K. Tang, Dynamic localization and functional implications of Aurora-C kinase during male mouse meiosis. Dev. Biol. 290, 398–410 (2006)CrossRef PubMed
    6.S.D. Slattery, R.V. Moore, B.R. Brinkley, R.M. Hall, Aurora-C and Aurora-B share phosphorylation and regulation of CENP-A and Borealin during mitosis. Cell Cycle 7, 787–795 (2008)CrossRef PubMed
    7.J.C. Gabillard, S. Ulisse, E. Baldini, S. Sorrenti, J.Y. Cremet, C. Coccaro et al., Aurora-C interacts with and phosphorylates the transforming acidic coiled-coil 1 protein. Biochem. Biophys. Res. Commun. 408, 647–653 (2011)CrossRef PubMed
    8.S. Ulisse, J.G. Delcros, E. Baldini, M. Toller, F. Curcio, L. Giacomelli et al., Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int. J. Cancer 119, 275–282 (2006)CrossRef PubMed
    9.S. Ulisse, J.G. Delcros, E. Baldini, M. Toller, F. Curcio, L. Giacomelli et al., Transforming acidic coiled-coil 3 and Aurora-A interact in human thyrocytes and their expression is deregulated in thyroid cancer tissues. Endocr. Relat. Cancer 14, 831–842 (2007)
    10.B.R. Brinkley, Managing the centrosome number games: from chaos to stability in cancer cell division. Trends Cell Biol. 11, 18–21 (2001)CrossRef PubMed
    11.W. Dove, Aurora and the hunt for cancer-modifying genes. Nat. Genet. 34, 353–354 (2003)CrossRef PubMed
    12.J.R. Bischoff, L. Anderson, Y. Zhu, K. Mossie, L. Ng, B. Souza et al., A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancer. EMBO J. 17, 3052–3065 (1998)CrossRef PubMed PubMedCentral
    13.M. Tatsuka, H. Katayama, T. Ota, T. Tanaka, S. Odashima, F. Suzuki et al., Multinuclearity and increased ploidy caused by overexpression of the Aurora- and IpI1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res. 58, 4811–4816 (1998)PubMed
    14.T. Takahashi, M. Futamura, N. Yoshimi, J. Sano, M. Katada, Y. Takagi et al., Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancer. Jpn. J. Cancer Res. 91, 1007–1014 (2000)CrossRef PubMed
    15.Y. Miyoshi, K. Iwao, C. Egawa, S. Noguchi, Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancer. Int. J. Cancer 92, 370–373 (2001)CrossRef PubMed
    16.H. Zhou, J. Kuang, L. Zhong, W.L. Kuo, J.W. Gray, A. Sahin et al., Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 20, 189–193 (1998)CrossRef PubMed
    17.P.D. Andrews, Aurora kinases: shining lights on the therapeutic horizon? Oncogene 24, 5005–5015 (2005)CrossRef PubMed
    18.T. Ota, S. Suto, H. Katayama, Z.B. Han, F. Suzuki, M. Maeda et al., Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res. 62, 5168–5177 (2002)PubMed
    19.E.A. Harrington, D. Bebbington, J. Moore, R.K. Rasmussen, A.O. Ajose-Adeogun, T. Nakayama et al., VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 10, 262–267 (2004)CrossRef PubMed
    20.Y. Arlot-Bonnemains, E. Baldini, B. Martin, J.G. Delcros, M. Toller, F. Curcio et al., Effects of the Aurora kinase inhibitor VX-680 on anaplastic thyroid cancer-derived cell lines. Endocr. Relat. Cancer 15, 559–568 (2008)CrossRef PubMed
    21.S. Ulisse, Y. Arlot-Bonnemains, E. Baldini, S. Morrone, S. Carocci, L. Di Luigi et al., Inhibition of the aurora kinases suppresses in vitro NT2-D1 cell growth and tumorigenicity. J. Endocrinol. 204, 135–142 (2010)CrossRef PubMed
    22.M.I. Hu, A.K. Ying, C. Jimenez, Update on medullary thyroid cancer. Endocrinol. Metab. Clin. North Am. 43, 423–442 (2014)CrossRef PubMed
    23.J.W. de Groot, T.P. Links, J.T. Plukker, C.J. Lips, R.M. Hofstra, RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr. Rev. 27, 535–560 (2006)CrossRef PubMed
    24.A.P. Dackiw, The surgical management of medullary thyroid cancer. Otolaryngol. Clin. North Am. 43, 365–374 (2010)CrossRef PubMed
    25.S. Sorrenti, E. Guaitoli, A. Catania, V. D’Andrea, F.M. Di Matteo, M. Nardi et al., Surgical strategies in patients with medullary thyroid carcinoma. Clin. Ther. 163, E303–E306 (2012)
    26.A. Hidalgo, M.E. Medrano, S. Rodrìguez, C. Franco, I. Martinez, L. Benítez et al., Presence of the 918 mutation in the RET proto-oncogene in a Mexican patient with multiple endocrine neoplasia type 2B. J. Exp. Clin. Cancer Res. 17, 149–152 (1998)PubMed
    27.M. Schlumberger, F. Carlomagno, E. Baudin, J.M. Bidart, M. Santoro, New therapeutic approaches to treat medullary thyroid carcinoma. Nat. Clin. Pract. 4, 22–32 (2008)CrossRef
    28.D.W. Ball, Medullary thyroid cancer: therapeutic targets and molecular markers. Curr. Opin. Oncol. 19, 18–23 (2007)CrossRef PubMed
    29.Medullary Thyroid Carcinoma Clinical Group, S. Ruiz-Llorente, C. Montero-Conde, R.L. Milne, C.M. Moya, A. Cebrián, R. Letón et al., Association study of 69 genes in the ret pathway identifies low-penetrance loci in sporadic medullary thyroid carcinoma. Cancer Res. 67, 9561–9567 (2007)CrossRef
    30.D. Vezzosi, A. Bennet, P. Caron, Recent advances in treatment of medullary thyroid carcinoma. Ann. Endocrinol. 68, 147–153 (2007)CrossRef
    31.H. Takami, M. Niimi, Y. Ikeda, Prognosis of a family with familial medullary thyroid carcinoma. J. Exp. Clin. Cancer Res. 18, 223–224 (1999)PubMed
    32.I. Vainas, Ch. Koussis, K. Pazaitou-Panayiotou, A. Drimonitis, A. Chrisoulidou, I. Iakovou et al., Somatostatin receptor expression in vivo and response to somatostatin analog therapy with or without other antineoplastic treatments in advanced medullary thyroid carcinoma. J. Exp. Clin. Cancer Res. 23, 549–559 (2004)PubMed
    33.M.G. Manfredi, J.A. Ecsedy, A. Chakravarty, L. Silverman, M. Zhang, K.M. Hoar et al., Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin. Cancer Res. 17, 7614–7624 (2011)CrossRef PubMed
    34.R.W. Wilkinson, R. Odedra, S.P. Heaton, S.R. Wedge, N.J. Keen, C. Crafter et al., AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin. Cancer Res. 13, 3682–3688 (2007)CrossRef PubMed
    35.S.S. Leong, J.S. Horoszewicz, K. Shimaoka, M. Friedman, E. Kawinski, M.J. Song et al., A new cell line for study of human medullary thyroid carcinoma, in Advances in thyroid neoplasia, ed. by M. Andreoli, F. Monaco, J. Robbins (Field Educational Italia, Rome, 1981), pp. 95–108
    36.F. Carlomagno, D. Salvatore, M. Santoro, V. de Franciscis, L. Quadro, L. Panariello et al., Point mutation of the RET proto-oncogene in the TT human medullary thyroid carcinoma cell line. Biochem. Biophys. Res. Commun. 207, 1022–1028 (1995)CrossRef PubMed
    37.D.J. Marsh, G. Theodosopoulos, K. Martin-Schulte, A.L. Richardson, J. Philips, H.D. Röher et al., Genome-wide copy number imbalances identified in familial and sporadic medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 88, 1866–1872 (2003)CrossRef PubMed
    38.E.N. Klein Hesselink, D. Steenvoorden, E. Kapiteijn, E.P. Corssmit, A.N. van der Horst-Schrivers, J.D. Lefrandt et al., Therapy of endocrine disease: response and toxicity of small-molecule tyrosine kinase inhibitors in patients with thyroid carcinoma: a systematic review and meta-analysis. Eur. J. Endocrinol. 172, R215–R225 (2015)CrossRef PubMed
    39.E. Baldini, Y. Arlot-Bonnemains, S. Sorrenti, C. Mian, M.R. Pelizzo, E. De Antoni et al., Aurora kinases are expressed in medullary thyroid carcinoma (MTC) and their inhibition suppresses in vitro growth and tumorigenicity of the MTC derived cell line TT. BMC Cancer 11, 411 (2011)CrossRef PubMed PubMedCentral
    40.Y. Su, S. Pan, Z. Li, L. Li, X. Wu, P. Hao et al., Multiplex imaging and cellular target identification of kinase inhibitors via an affinity-based proteome profiling approach. Sci. Rep. 5, 7724 (2015)CrossRef PubMed PubMedCentral
    41.W. Qi, L.S. Cooke, X. Liu, L. Rimsza, D.J. Roe, A. Manziolli et al., Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma. Biochem. Pharmacol. 81, 881–890 (2011)CrossRef PubMed PubMedCentral
    42.D. Mori, Y. Yano, K. Toyo-oka, N. Yoshida, M. Yamada, M. Maramatsu et al., NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation and TACC3 recruitment. Mol. Cell. Biol. 27, 352–367 (2007)CrossRef PubMed PubMedCentral
    43.M. Cazales, E. Schmitt, E. Montembault, C. Dozier, C. Prigent, B. Ducommun, CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 4, 1233–1238 (2005)CrossRef PubMed
    44.A. Seki, J.A. Coppinger, C.Y. Jang, J.R. Yates, G. Fang, Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655–1658 (2008)CrossRef PubMed PubMedCentral
    45.D.A. Brito, C.L. Rieder, Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006)CrossRef PubMed PubMedCentral
  • 作者单位:Chiara Tuccilli (1)
    Enke Baldini (1)
    Natalie Prinzi (1)
    Stefania Morrone (1)
    Salvatore Sorrenti (2)
    Angelo Filippini (2)
    Antonio Catania (2)
    Stefania Alessandrini (1)
    Roberta Rendina (1)
    Carmela Coccaro (1)
    Massimino D’Armiento (1)
    Salvatore Ulisse (1)

    1. Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
    2. Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
  • 刊物主题:Endocrinology; Diabetes; Internal Medicine; Science, general;
  • 出版者:Springer US
  • ISSN:1559-0100
文摘
Deregulated expression of the Aurora kinases (Aurora-A, B, and C) is thought to be involved in cell malignant transformation and genomic instability in several cancer types. Over the last decade, a number of small-molecule inhibitors of Aurora kinases have been developed, which have proved to efficiently restrain malignant cell growth and tumorigenicity. Regarding medullary thyroid carcinoma (MTC), we previously showed the efficacy of a pan-Aurora kinase inhibitor (MK-0457) in impairing growth and survival of the MTC-derived cell line TT. In the present study, we sought to establish if one of the Aurora kinases might represent a preferential target for MTC therapy. The effects of selective inhibitors of Aurora-A (MLN8237) and Aurora-B (AZD1152) were analyzed on TT cell proliferation, apoptosis, cell cycle, and ploidy. The two inhibitors reduced TT cell proliferation in a time- and dose-dependent manner, with IC50 of 19.0 ± 2.4 nM for MLN8237 and 401.6 ± 44.1 nM for AZD1152. Immunofluorescence experiments confirmed that AZD1152 inhibited phosphorylation of histone H3 (Ser10) by Aurora-B, while it did not affect Aurora-A autophosphorylation. MLN8237 inhibited Aurora-A autophosphorylation as expected, but at concentrations required to achieve the maximum antiproliferative effects it also abolished H3 (Ser10) phosphorylation. Cytofluorimetry experiments showed that both inhibitors induced accumulation of cells in G2/M phase and increased the subG0/G1 fraction and polyploidy. Finally, both inhibitors triggered apoptosis. We demonstrated that inhibition of either Aurora-A or Aurora-B has antiproliferative effects on TT cells, and thus it would be worthwhile to further investigate the therapeutical potential of Aurora kinase inhibitors in MTC treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700