Gap Functions and Global Error Bounds for Generalized Mixed Variational Inequalities on Hadamard Manifolds
详细信息    查看全文
  • 作者:Xiao-bo Li ; Li-wen Zhou ; Nan-jing Huang
  • 关键词:Hadamard manifold ; Generalized mixed variational inequality ; Gap function ; Global error bound
  • 刊名:Journal of Optimization Theory and Applications
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:168
  • 期:3
  • 页码:830-849
  • 全文大小:501 KB
  • 参考文献:1.Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory algorithms and applications. Math. Prog. 48, 161–220 (1990)CrossRef MathSciNet MATH
    2.Zhao, L., Pafermos, S.: General economic equilibrium and variational inequalities. Oper. Res. Lett. 10, 369–376 (1991)CrossRef MathSciNet MATH
    3.Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementary Problems. Springer, New York (2003)
    4.Larsson, T., Patriksson, M.: A class of gap functions for variational inequalities. Math. Prog. 64, 53–79 (1994)CrossRef MathSciNet MATH
    5.Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Prog. 53, 99–110 (1992)CrossRef MathSciNet MATH
    6.Yamashita, N., Fukushima, M.: Equivalent unconstrained minimization and global error bounds for variational inequality problems. SIAM J. Control Optim. 35, 273–284 (1997)CrossRef MathSciNet MATH
    7.Li, G., Ng, K.F.: On generalized \(D\) -gap functions for nonsmooth and nonmonotone variational inequality problem. SIAM J. Optim. 20, 667–690 (2009)CrossRef MathSciNet MATH
    8.Tan, L.L.: Regularized gap functions for nonsmooth variational inequality problems. J. Math. Anal. Appl. 334, 1022–1038 (2007)CrossRef MathSciNet MATH
    9.Yang, X.Q., Yao, J.C.: Gap functions and existence of solutions to set-valued vector variational inequalities. J. Optim. Theory Appl. 115, 407–417 (2002)CrossRef MathSciNet MATH
    10.Aussel, D., Correa, R., Marechal, M.: Gap functions for quasivariational inequalities and generalized Nash equilibrium problems. J. Optim. Theory Appl. 151, 474–488 (2011)CrossRef MathSciNet MATH
    11.Aussel, D., Dutta, J.: On gap functions for multivalued Stampacchia variational inequalities. J. Optim. Theory Appl. 149, 513–527 (2011)CrossRef MathSciNet MATH
    12.Peng, J.M.: Equivalence of variational inequality problems to unconstrained optimization. Math. Prog. 78, 347–356 (1997)MATH
    13.Ng, K.F., Tan, L.L.: Error bounds of regularized gap functions for nonsmooth variational inequality problems. Math. Prog. 110, 405–429 (2007)CrossRef MathSciNet MATH
    14.Solodov, M.V.: Merit functions and error bounds for generalized variational inequalities. J. Math. Anal. Appl. 287, 405–414 (2003)CrossRef MathSciNet MATH
    15.Fan, J.H., Wang, X.G.: Gap functions and global error bounds for set-valued variational inequalities. J. Comput. Appl. Math. 233, 2956–2965 (2010)CrossRef MathSciNet MATH
    16.Tang, G.J., Huang, N.J.: Gap functions and global error bounds for set-valued mixed variational inequalities. Taiwan. J. Math. 17, 1267–1286 (2013)CrossRef MathSciNet MATH
    17.Li, J., Mastroeni, G.: Vector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functions. J. Optim. Theory Appl. 145, 355–372 (2010)CrossRef MathSciNet MATH
    18.Walter, R.: On the metric projections onto convex sets in Riemannian spaces. Arch. Math. 25, 91–98 (1974)CrossRef MATH
    19.Udriste, C.: Convex functions and optimization methods on Riemannian manifolds. In: Mathematics and its Applications, vol. 297. Kluwer Academic Publishers, Dordrecht (1994)
    20.Németh, S.Z.: Five kinds of monotone vector fields. PUMA 9(3–4), 417–428 (1998)MATH
    21.Németh, S.Z.: Monotone vector fields. Publ. Math. Debrecen 54(3–4), 437–449 (1999)MathSciNet MATH
    22.Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52, 1491–1498 (2003)CrossRef MathSciNet MATH
    23.Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)CrossRef MathSciNet MATH
    24.Li, C., Wang, J.H.: Newton’s method on Riemannian manifolds: smale’s point estimate theory under the \(\gamma \) -condition. IMAJ. Numer. Anal. 26, 228–251 (2006)CrossRef
    25.Ferreira, O.P.: Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds. Nonlinear Anal. 68, 1517–1528 (2008)CrossRef MathSciNet MATH
    26.Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31, 133–151 (2005)CrossRef MathSciNet MATH
    27.Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663–683 (2009)CrossRef MathSciNet MATH
    28.PapaQuiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 46–69 (2009)MathSciNet
    29.Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)CrossRef MathSciNet MATH
    30.Azagra, D., Ferrera, J., López-Mesas, M.: Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)CrossRef MathSciNet MATH
    31.Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97, 93–104 (1998)CrossRef MathSciNet MATH
    32.Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012)CrossRef MathSciNet MATH
    33.Barani, A., Pouryayevali, M.R.: Invariant monotone vector fields on Riemannian manifolds. Nonlinear Anal. 70, 1850–1861 (2008)CrossRef MathSciNet
    34.Rapcsák, T.: Smooth Nonlinear Optimization in \(\mathbb{R}^{n}\) . Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (1997)CrossRef
    35.Rapcsák, T.: Geodesic convexity in nonlinear optimization. J. Optim. Theory Appl. 69, 169–183 (1991)CrossRef MathSciNet MATH
    36.Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009)CrossRef MathSciNet MATH
    37.Tang, G.J., Huang, N.J.: Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Global Optim. 54, 493–509 (2012)CrossRef MathSciNet MATH
    38.Tang, G.J., Zhou, L.W., Huang, N.J.: The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Optim. Lett. 7, 779–790 (2013)CrossRef MathSciNet MATH
    39.Zhou, L.W., Huang, N.J.: Generalized KKM Theorems on Hadamard Manifolds with Applications (2009). http://​www.​paper.​edu.​cn/​index.​php/​default/​releasepaper/​content/​200906-669
    40.Zhou, L.W., Huang, N.J.: Existence of solutions for vector optimization on Hadamard manifolds. J. Optim. Theory Appl. 157, 44–53 (2013)CrossRef MathSciNet MATH
    41.Li, X.B., Huang, N.J.: Generalized vector quasi-equilibrium problems on Hadamard manifolds. Optim. Lett. 9, 155–170 (2015)CrossRef MathSciNet MATH
    42.Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21, 1523–1560 (2011)CrossRef MathSciNet MATH
    43.Klingenberg, W.: A Course in Differential Geometry. Springer, Berlin (1978)CrossRef MATH
    44.Chavel, I.: Riemannian Geometry-A Modern Introduction. Cambridge University Press, Cambridge (1993)MATH
    45.Sakai, T.: Riemannian Geometry. In: Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence, RI (1996)
    46.Li, C., López, G., Martín-Márquez, V., Wang, J.H.: Resolvents of set-valued monotone vector fields in Hadamard manifolds. Set Valued Anal. 19, 361–383 (2011)CrossRef MATH
    47.Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)CrossRef MATH
    48.Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)MATH
  • 作者单位:Xiao-bo Li (1)
    Li-wen Zhou (1)
    Nan-jing Huang (2)

    1. School of Sciences, Southwest Petroleum University, Chengdu, 610500, Sichuan, People’s Republic of China
    2. Department of Mathematics, Sichuan University, Chengdu, 610064, Sichuan, People’s Republic of China
  • 刊物主题:Calculus of Variations and Optimal Control; Optimization; Optimization; Theory of Computation; Applications of Mathematics; Engineering, general; Operations Research/Decision Theory;
  • 出版者:Springer US
  • ISSN:1573-2878
文摘
In this paper, a generalized mixed variational inequality on Hadamard manifolds is introduced and studied. Some gap functions for the generalized mixed variational inequality on Hadamard manifolds are obtained under suitable conditions. By using these gap functions, global error bounds for the generalized mixed variational inequality are derived on Hadamard manifolds. The main results presented in this paper generalize and improve corresponding known results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700