An alternative wind profile formulation for urban areas in neutral conditions
详细信息    查看全文
  • 作者:Armando Pelliccioni (1)
    Paolo Monti (2)
    Giovanni Leuzzi (2)

    1. INAIL-DIPIA
    ; Via Fontana Candida 1 ; 00040聽 ; Monteporzio Catone ; Rome ; Italy
    2. DICEA
    ; Universit脿 di Roma 鈥淟a Sapienza鈥? Via Eudossiana 18 ; 00184聽 ; Rome ; Italy
  • 关键词:MOST ; Roughness length ; Wind profile ; Urban boundary layer ; Roughness sublayer ; Inertial sublayer
  • 刊名:Environmental Fluid Mechanics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 页码:135-146
  • 全文大小:3,489 KB
  • 参考文献:1. Andreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS, Persson POG, Grachev AA (2006) Evaluations of the von Karman constant in the atmospheric surface layer. J Fluid Mech 559:117鈥?49 CrossRef
    2. Argentini S, Pietroni I, Gariazzo C, Amicarelli A, Mastrantonio G, Pelliccioni A, Petenko I, Viola A (2009) Boundary layer temperature profiles by a RASS and a microwave radiometer: Differences, limits and advantages. Nuovo Cimento B 124:549鈥?64
    3. Arya SPS (1975) Buoyancy effects in a horizontal flat-plane boundary layer. J Fluid Mech 68:321鈥?43 CrossRef
    4. Barlow JF, Rooney GG, von H眉nerbein S, Bradley SG (2008) Relating urban surface-layer structure to upwind terrain for the Salford Experiment (Salfex). Bound-Lay Meteorol 127:173鈥?91 CrossRef
    5. Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35:469鈥?96 CrossRef
    6. Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Bound-Lay Meteorol 104:229鈥?59 CrossRef
    7. Dallman A, Di Sabatino S, Fernando HJS (2013) Flow and turbulence in an industrial/suburban roughness canopy. Environ Fluid Mech 13:279鈥?07 CrossRef
    8. De Ridder K (2010) Bulk transfer relations for the Roughness sublayer. Bound-Lay Meteorol 134:257鈥?67 CrossRef
    9. Di Sabatino S, Leo LS, Cataldo R, Ratti C, Britter RE (2010) Construction of digital elevation models for a southern European city and a comparative morphological analysis with respect to northern European and north American cities. J Appl Meteorol Climatol 49:1377鈥?396 CrossRef
    10. Fernando HJS (2010) Fluid dynamics of urban atmospheres in complex terrain. Annu Rev Fluid Mech 42:365鈥?89 CrossRef
    11. Frenzen P, Vogel CA (1995) On the magnitude and apparent range of variation if the von Karman constant in the atmospheric surface layer. Bound-Lay Meteor 72:371鈥?92 CrossRef
    12. Garrat JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge
    13. Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of urban surface form. J Appl Meteorol 38:1261鈥?292
    14. Harman IN, Finnigan JJ (2007) A simple unified theory for flow in the canopy and roughness sublayer. Bound-Lay Meteorol 123:339鈥?63 CrossRef
    15. Hertwig D, Efthimiou GC, Bartzis JC, Leitl B (2012) CFD-RANS model validation of turbulent flow in a semi-idealized urban canopy. J Wind Eng Ind Aerodyn 111:61鈥?2 CrossRef
    16. Karlsson S (1986) The applicability of wind profile formulas to an urban-rural interface site. Bound-Lay Meteorol 34:333鈥?55 CrossRef
    17. Kastner-Klein P, Rotach MW (2004) Mean flow and turbulence characteristics in an urban roughness sublayer. Bound-Lay Meteor 111:55鈥?4 CrossRef
    18. Li QS, Zhi LH, Hu F (2009) Field monitoring of boundary layer wind characteristics in urban area. Wind Struct 12:553鈥?74 CrossRef
    19. Leuzzi G, Monti P (1997) Breeze Analysis by Mast and Sodar Measurements. Nuovo Cimento C 20:343鈥?59
    20. Macdonald RW, Griffiths RS, Hall DJ (1998) An Improved Method for the Estimation of Surface Roughness of Obstacle Arrays. Atmos Environ 32:1857鈥?894 CrossRef
    21. Monti P, Leuzzi G (2005) A numerical study of mesoscale flow and dispersion over coastal complex terrain. Int J Environ Pollut 25 Nos 1/2/3/4:239鈥?50
    22. Oke TR (1976) The distinction between canopy and boundary-layer urban heat island. Atmosphere 14:268鈥?77
    23. Oke TR (1988) Boundary layer climates. Routledge, New York
    24. Panofsky HA, Dutton JA (1984) Atmospheric Turbulence. John Wiley & Sons, New York
    25. Pelliccioni A, Monti P, Gariazzo C, Leuzzi G (2012) Some characteristics of the urban boundary layer above Rome, Italy, and applicability of Monin-Obukhov similarity. Environ Fluid Mech 12:405鈥?28 CrossRef
    26. Pelliccioni A, Monti P, Leuzzi G (2014) Roughness length parameterization in urban boundary layers. Int J Environ Pollut, In press
    27. Petenko I, Mastrantonio G, Viola A, Argentini S, Coniglio L, Monti P, Leuzzi G (2011) Local circulation diurnal patterns and their relationship with large-scale flows in a coastal area of the Tyrrhenian Sea. Bound-Lay Meteorol 139:353鈥?66 CrossRef
    28. Physick WL, Garratt JR (1995) Incorporation of a high-roughness lower boundary into a mesoscale model for studies of dry deposition over a complex terrain. Bound-Lay Meteorol 74:55鈥?1 CrossRef
    29. Pournazeri S, Venkatram A, Princevac M, Tan S, Schulte N (2012) Estimating the height of the nocturnal boundary layer for dispersion applications. Atmos Environ 54:611鈥?23 CrossRef
    30. Stull RB (1988) An introduction to Boundary Layer Meteorology. Kluwer Academic Publisher, Dordrecht CrossRef
    31. Tennekes H (1973) The logarithmic wind profile. J Atmos Sci 30:234鈥?38 CrossRef
    32. Zilitinkevich SS, Mammarella I, Baklanov AA, Joffre SM (2008) The effect of stratification on the aerodynamic roughness length and displacement height. Bound-Lay Meteorol 129:179鈥?90 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environmental Physics
    Mechanics
    Hydrogeology
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Netherlands
  • ISSN:1573-1510
文摘
On the basis of meteorological observations conducted within the city of Rome, Italy, a new formulation of the wind-speed profile valid in urban areas and neutral conditions is developed. It is found that the role played by the roughness length in the canonical log-law profile can be taken by a local length scale, depending on both the surface cover and the distance above the ground surface, which follows a pattern of exponential decrease with height. The results show that the proposed model leads to increased performance compared with that obtained by using other approaches found in the literature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700