An in-vivo evaluation of a MEMS drug delivery device using Kunming mice model
详细信息    查看全文
  • 作者:Yaqian Liu (1)
    Peiyi Song (2)
    Jianwei Liu (3)
    Danny Jian Hang Tng (2)
    Rui Hu (2)
    Hongyan Chen (3)
    Yazhuo Hu (3)
    Cher Heng Tan (4)
    Jianhua Wang (3)
    Jing Liu (3)
    Ling Ye (3)
    Ken-Tye Yong (2)

    1. Laboratory Animal Center of the Chinese PLA General Hospital
    ; Beijing ; 100853 ; People鈥檚 Republic of China
    2. School of Electrical and Electronic Engineering
    ; Nanyang Technological University ; Singapore ; 639798 ; Singapore
    3. Institute of Geriatrics and Beijing Key Lab of Aging and Geriatrics
    ; Chinese PLA General Hospital ; Beijing ; 100853 ; People鈥檚 Republic of China
    4. Department of Diagnostic Radiology
    ; Tan Tock Seng Hospital ; 11 Jalan Tan Tock Seng ; Singapore ; 308433 ; Singapore
  • 关键词:Individualized medicine ; Drug delivery ; Implantable Device ; Biocompatibility ; In Vivo
  • 刊名:Biomedical Microdevices
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:17
  • 期:1
  • 全文大小:3,466 KB
  • 参考文献:1. J. Ambati, E.S. Gragoudas, J.W. Miller, T.T. You, K. Miyamoto, F.C. Delori, A.P. Adamis, Transscleral delivery of bioactive protein to the choroid and retina. Invest. Ophthalmol. Vis. Sci. 41(5), 1186鈥?191 (2000)
    2. J. Chen, M. Chu, K. Koulajian, X.Y. Wu, A. Giacca, Y. Sun, A monolithic polymeric microdevice for pH-responsive drug delivery. Biomed. Microdevices 11(6), 1251鈥?257 (2009). doi:10.1007/s10544-009-9344-2 CrossRef
    3. H.D. Chirra, T.A. Desai, Multi-reservoir bioadhesive microdevices for independent rate-controlled delivery of multiple drugs. Small 8(24), 3839鈥?846 (2012). doi:10.1002/smll.201201367 CrossRef
    4. A.J. Chung, Y.S. Huh, D. Erickson, A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release. Biomed. Microdevices 11(4), 861鈥?67 (2009). doi:10.1007/s10544-009-9303-y CrossRef
    5. N.M. Elman, H.L. Ho Duc, M.J. Cima, An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care. Biomed. Microdevices 11(3), 625鈥?31 (2009). doi:10.1007/s10544-008-9272-6 CrossRef
    6. R. Farra, N.F. Sheppard, L. McCabe, R.M. Neer, J.M. Anderson, J.T. Santini, M.J. Cima, R. Langer, First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4, 122ra121 (2012). doi:10.1126/scitranslmed.3003276 CrossRef
    7. H. Gensler, R. Sheybani, P.Y. Li, R. Lo, S. Zhu, K.T. Yong, I. Roy, P.N. Prasad, R. Masood, U.K. Sinha, Implantable MEMS drug delivery device for cancer radiation reduction. In: Micro Electro Mechanical Systems (MEMS), 2010 I.E. 23rd International Conference on (2010) IEEE, pp. 23鈥?6
    8. H. Gensler, R. Sheybani, P.Y. Li, R. Lo Mann, E. Meng, An implantable MEMS micropump system for drug delivery in small animals. Biomed. Microdevices 14(3), 483鈥?96 (2012). doi:10.1007/s10544-011-9625-4 CrossRef
    9. M.M. Gottesman, Mechanisms of cancer drug resistance. Annu. Rev. Med. 53(1), 615鈥?27 (2002) CrossRef
    10. A.C.R. Grayson, I.S. Choi, B.M. Tyler, P.P. Wang, H. Brem, M.J. Cima, R. Langer, Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater. 2(11), 767鈥?72 (2003). doi:10.1038/nmat998 CrossRef
    11. D.J. Hang Tng, P. Song, R. Hu, C. Yang, K.-T. Yong, High reliability nanosandwiched Pt/Ti multilayer electrode actuators for on-chip biomedical applications. Analyst 139(2), 407鈥?15 (2014). doi:10.1039/c3an01363d CrossRef
    12. S. Hu, S. Zeng, B. Zhang, C. Yang, P. Song, D.J.H. Tng, G. Lin, Y. Wang, T. Anderson, P. Coquet, L. Liu, X. Zhang, K.-T. Yong, Preparation of biofunctionalized quantum dots using microfluidic chips for bioimaging. Analyst (2014). doi:10.1039/c4an00773e
    13. P.L. Huang, P.H. Kuo, Y.J. Huang, H.H. Liao, Y.J.J. Yang, T. Wang, Y.H. Wang, S.S. Lu, A controlled-release drug delivery system on a chip using electrolysis. IEEE Trans. Ind. Electron. 59(3), 1578鈥?587 (2012). doi:10.1109/tie.2011.2160135 CrossRef
    14. D.S. Kohane, R. Langer, Biocompatibility and drug delivery systems. Chem. Sci. 1(4), 441鈥?46 (2010). doi:10.1039/c0sc00203h CrossRef
    15. P. Kurian, B. Kasibhatla, J. Daum, C. Burns, M. Moosa, K. Rosenthal, J. Kennedy, Synthesis, permeability and biocompatibility of tricomponent membranes containing polyethylene glycol, polydimethylsiloxane and polypentamethylcyclopentasiloxane domains. Biomaterials 24(20), 3493鈥?503 (2003) CrossRef
    16. D.A. LaVan, T. McGuire, R. Langer, Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21(10), 1184鈥?191 (2003). doi:10.1038/nbt876 CrossRef
    17. P.Y. Li, J. Shih, R. Lo, S. Saati, R. Agrawal, M.S. Humayun, Y.C. Tai, E. Meng, An electrochemical intraocular drug delivery device. Sensors and Actuators a-Physical 143(1), 41鈥?8 (2008). doi:10.1016/j.sna.2007.06.034 CrossRef
    18. P.Y. Li, R. Sheybani, J.T.W. Kuo, E. Meng, A parylene bellows electrochemical actuator for intraocular drug delivery. In: Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International, 21鈥?5 June 2009 (2009), pp. 1461鈥?464. doi:10.1109/sensor.2009.5285819
    19. P.Y. Li, R. Sheybani, C.A. Gutierrez, J.T.W. Kuo, E. Meng, A parylene bellows electrochemical actuator. J. Microelectromech. Syst. 19(1), 215鈥?28 (2010). doi:10.1109/jmems.2009.2032670 CrossRef
    20. R. Lin, M.A. Burns, Surface-modified polyolefin microfluidic devices for liquid handling. J. Micromech. Microeng. 15(11), 2156 (2005) CrossRef
    21. R. Lo, P.Y. Li, S. Saati, R. Agrawal, M.S. Humayun, E. Meng, A refillable microfabricated drug delivery device for treatment of ocular diseases. Lab Chip 8(7), 1027鈥?030 (2008). doi:10.1039/b804690e CrossRef
    22. R. Lo, P.-Y. Li, S. Saati, R. Agrawal, M. Humayun, E. Meng, A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed. Microdevices 11(5), 959鈥?70 (2009). doi:10.1007/s10544-009-9313-9 CrossRef
    23. E. Meng, T. Hoang, MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv. Drug Deliv. Rev. 64(14), 1628鈥?638 (2012). doi:10.1016/j.addr.2012.08.006 CrossRef
    24. A. Mercanzini, K. Cheung, D.L. Buhl, M. Boers, A. Maillard, P. Colin, J.-C. Bensadoun, A. Bertsch, P. Renaud, Demonstration of cortical recording using novel flexible polymer neural probes. Sensors Actuators A Phys. 143(1), 90鈥?6 (2008) CrossRef
    25. R. Padera, E. Bellas, J.Y. Tse, D. Hao, D.S. Kohane, Local Myotoxicity from Sustained Release of Bupivacaine from Microparticles. Anesthesiology 108(5), 921鈥?28 (2008). doi:10.1097/ALN.1090b1013e31816c31818a31848 CrossRef
    26. V.S. Polikov, P.A. Tresco, W.M. Reichert, Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1鈥?8 (2005) CrossRef
    27. L. Po-Ying, R. Sheybani, C.A. Gutierrez, J.T.W. Kuo, E. Meng, A parylene bellows electrochemical actuator. J. Microelectromech. Syst. 19(1), 215鈥?28 (2010) CrossRef
    28. J.H. Prescott, S. Lipka, S. Baldwin, N.F. Sheppard, J.M. Maloney, J. Coppeta, B. Yomtov, M.A. Staples, J.T. Santini, Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat. Biotechnol. 24(4), 437鈥?38 (2006). doi:10.1038/nbt1199 CrossRef
    29. S. Saati, R. Lo, P.-Y. Li, E. Meng, R. Varma, M.S. Humayun, Mini drug pump for ophthalmic use. Curr. Eye Res. 35(3), 192鈥?01 (2010). doi:10.3109/02713680903521936 CrossRef
    30. J.T. Santini, M.J. Cima, R. Langer, A controlled-release microchip. Nature 397(6717), 335鈥?38 (1999) CrossRef
    31. J.T. Santini, A.C. Richards, R. Scheidt, M.J. Cima, R. Langer, Microchips as controlled drug-delivery devices. Angew. Chem. Int. Ed. 39(14), 2397鈥?407 (2000) CrossRef
    32. R. Sheybani, E. Meng, High-efficiency MEMS electrochemical actuators and electrochemical impedance spectroscopy characterization. J. Microelectromech. Syst. 21(5), 1197鈥?208 (2012). doi:10.1109/jmems.2012.2203103 CrossRef
    33. M. Shobo, H. Yamada, A. Koakutsu, N. Hamada, M. Fujii, K. Harada, K. Ni, N. Matsuoka, Chronic treatment with olanzapine via a novel infusion pump induces adiposity in male rats. Life Sci. 88(17鈥?8), 761鈥?65 (2011). doi:10.1016/j.lfs.2011.02.014 CrossRef
    34. R.A. Singh, L. Siyuan, N. Satyanarayana, T. Kustandi, S.K. Sinha, Bio-inspired polymeric patterns with enhanced wear durability for microsystem applications. Mater. Sci. Eng. C 31(7), 1577鈥?583 (2011) CrossRef
    35. P. Song, D.J.H. Tng, R. Hu, G. Lin, E. Meng, K.-T. Yong, An electrochemically actuated MEMS device for individualized drug delivery: an in vitro study. Adv. Healthc. Mater. 2(8), 1170鈥?178 (2013). doi:10.1002/adhm.201200356 CrossRef
    36. P. Song, R. Hu, D.J.H. Tng, K.-T. Yong, Moving towards individualized medicine with microfluidics technology. RSC Adv. 4(22), 11499鈥?1511 (2014). doi:10.1039/c3ra45629c CrossRef
    37. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70(1鈥?), 1鈥?0 (2001). doi:10.1016/s0168-3659(00)00339-4 CrossRef
    38. M. Staples, Microchips and controlled-release drug reservoirs. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 2(4), 400鈥?17 (2010). doi:10.1002/wnan.93 CrossRef
    39. M. Staples, K. Daniel, M.J. Cima, R. Langer, Application of micro- and nano-electromechanical devices to drug delivery. Pharm. Res. 23(5), 847鈥?63 (2006). doi:10.1007/s11095-006-9906-4 CrossRef
    40. D. Tng, R. Hu, P. Song, I. Roy, K.-T. Yong, Approaches and challenges of engineering implantable microelectromechanical systems (MEMS) drug delivery systems for in vitro and in vivo applications. Micromachines 3(4), 615鈥?31 (2012) CrossRef
    41. D.J.H. Tng, P. Song, R. Hu, G. Lin, K.-T. Yong, A sustainable approach to individualized disease treatment: The Engineering of a multiple use MEMS drug delivery device. In: Nanoelectronics Conference (INEC), 2013 I.E. 5th International, 2鈥? Jan. 2013 (2013), pp. 153鈥?56. doi:10.1109/inec.2013.6465982
    42. N.C. Tsai, C.Y. Sue, Review of MEMS-based drug delivery and dosing systems. Sensors Actuators A Phys. 134(2), 555鈥?64 (2007). doi:10.1016/j.sna.2006.06.014 CrossRef
    43. X.Q. Yang, B.A. Moosa, L. Deng, L. Zhao, N.M. Khashab, pH-triggered micellar membrane for controlled release microchips. Polym. Chem. 2(11), 2543鈥?547 (2011). doi:10.1039/c1py00300c CrossRef
    44. Y. Zhang, L.Z. Benet, The gut as a barrier to drug absorption. Clin. Pharmacokinet. 40(3), 159鈥?68 (2001) CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Biophysics and Biomedical Physics
    Nanotechnology
    Engineering Fluid Dynamics
  • 出版者:Springer Netherlands
  • ISSN:1572-8781
文摘
The use of MEMS implantable drug delivery pump device enables one to program the desired drug delivery profile in the device for individualized medicine treatment to patients. In this study, a MEMS drug delivery device is prepared and employed for in vivo applications. 12 devices are implanted subcutaneously into Kunming mice for evaluating their long term biocompatibility and drug-delivery efficiency in vivo. All the mice survived after device implantation surgery procedures. Histological analysis result reveals a normal wound healing progression within the tissues-to-device contact areas. Serum analysis shows that all measured factors are within normal ranges and do not indicate any adverse responses associated with the implanted device. Phenylephrine formulation is chosen and delivered to the abdominal cavity of the mice by using either the implanted MEMS device (experimental group) or the syringe injection method (control group). Both groups show that they are able to precisely control and manipulate the increment rate of blood pressure in the small animals. Our result strongly suggests that the developed refillable implantable MEMS devices will serve as a viable option for future individualized medicine applications such as glaucoma, HIV-dementia and diabetes therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700