Hybrid quantum private communication with continuous-variable and discrete-variable signals
详细信息    查看全文
  • 作者:WeiQi Liu (1) (2)
    JinYe Peng (1)
    Chao Wang (2)
    ZhengWen Cao (1)
    Duan Huang (2)
    DaKai Lin (2)
    Peng Huang (2)
    GuiHua Zeng (1) (2)

    1. College of Information Science and Technology
    ; Northwest University ; Xi鈥檃n ; 710127 ; China
    2. State Key Laboratory of Advanced Optical Communication Systems and Networks
    ; and Center of Quantum Information Sensing and Processing ; Shanghai Jiaotong University ; Shanghai ; 200240 ; China
  • 关键词:hybrid quantum private communication ; Gaussian ; modulated CVQKD protocol ; BB84 protocol ; mutual influences ; 020301
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:58
  • 期:2
  • 页码:1-7
  • 全文大小:617 KB
  • 参考文献:1. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Processing of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India. New York: IEEE, 1984. 175鈥?79
    2. Zeng G H. Quantum Private Communication. Berlin: Springer-Verlag Press, 2010 CrossRef
    3. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145鈥?95 CrossRef
    4. Weedbrook C, Pirandola S, Garcia-Patron R, et al. Gaussian quantum information. Rev Mod Phys, 2012, 84: 621鈥?69 CrossRef
    5. Grosshans F, Van Assche G, Wenger J, et al. Quantum key distribution using gaussian-modulated coherent states. Nature, 2003, 501: 238鈥?41 CrossRef
    6. Fossier S, Diamant E, Debuisschert T, et al. Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. New J Phys, 2009, 11: 114014 CrossRef
    7. Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states. Phys Rev Lett, 2002, 88: 057902 CrossRef
    8. Lodewyck J, Bloch M, Garcia-Patron R, et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys Rev A, 2007, 76: 042305 CrossRef
    9. Weedbrook C, Lance A M, Bowen W P, et al. Quantum cryptography without switching. Phys Rev Lett, 2004, 93: 170504 CrossRef
    10. Qi B, Huang L L, Lo H K. Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys Rev A, 2007, 76: 052323 CrossRef
    11. Dai W C, Lu Y, Zhu J, et al. An integrated quantum secure communication system. Sci China-Inf Sci, 2011, 54: 2578鈥?591 CrossRef
    12. Lu Y, Jia Z, Dai W, et al. Experimental study on quantum data stream cipher using homodyne detection. In: IEEE International Conference on Computer Science and Information Processing, 2012. 50鈥?5
    13. Jouguet P, Kunz-Jacques S, Leverrier A, et al. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat Photonics, 2013, 7: 378鈥?81 CrossRef
    14. Grosshans F. Collective attacks and unconditional security in continuous variable quantum key distribution. Phys Rev Lett, 2005, 94: 020504 CrossRef
    15. Xu Q, Marcia B. Towards quantum key distribution system using homodyne detection with differential time-multiplexed reference. IEEE Int Conf Res, 2007: 158鈥?65
    16. Ruiz-Alba A, Calvo D, Garcia-Munoz V, et al. Practical quantum key distribution based on the BB84 protocol. Waves, 2001: 4鈥?4
    17. Shor P W, Preskill J. Simple proof of security of the bb84 quantum key distribution protocol. Phys Rev Lett, 2000, 85: 441鈥?44 CrossRef
    18. Shinata H, Honjo T, Shimizu K. Quantum key distribution over a 60-dB channel loss using SSPD with ultralow dark count rate. In: Conference on Lasers and Electro-Optics Parcific Rim, Kyoto, Japan, 2013
    19. Frohlich B, Dynes J F, Lucamarini M, et al. A quantum access network. Nature, 2013, 501: 69鈥?2 CrossRef
    20. Sasaki M, Fujiwara M, Ishizuka H, et al. Field test of quantum key distribution in the Tokyo QKD network. Opt Express, 2011, 19: 10387鈥?0409 CrossRef
    21. Fossier S, Diamanti E, Debuisschert T, et al. Field test of a continuousvariable quantum key distribution prototype. New J Phys, 2009, 11: 045023 CrossRef
    22. Nweke N I, Toliver P, Runser R J, et al. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels. Appl Phys Lett, 2005, 87: 174103 CrossRef
    23. Lu Y, Zhu J, He Y X, et al. Experiment of continuous variable quantum key distribution with DWDM system. In: The 9th Asian Conference on Quantum Information Science, 2009. 89鈥?1
    24. Liang Y, Zeng H P. Single-photon detection and its applications. Sci China-Phys Mech Astron, 2014, 57(7): 1218鈥?232 CrossRef
    25. Amnon Y, Pochi Y. Photonics: Optical Electronics in Modern Communications. Oxford: Oxford University Press, 2006. 382鈥?01
    26. Huang P, He G Q, Fang J, et al. Performance improvement of continuous-variable quantum key distribution via photon substraction. Phys Rev A, 2013, 87: 012317 CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
    Mechanics, Fluids and Thermodynamics
    Physics
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1927
文摘
The quantum key distribution (QKD) has been entering the practical application era. Subsequently, hybrid quantum private communication with discrete-variable signals, continuous-variable signals, and classic optical signals becomes inevitable in the practical scenario. In this paper, we experimentally investigated the mutual effects between the discrete-variable QKD (DVQKD) and the continuous-variable QKD (CVQKD) via a fiber channel. The experimental results show that the DVQKD will be influenced by the continuous-variable quantum signals and classic optical signals, while the CVQKD is not sensitive to the discrete-variable quantum signals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700