Tensor factorization using auxiliary information
详细信息    查看全文
  • 作者:Atsuhiro Narita (1) atsuhiro_narita@mist.i.u-tokyo.ac.jp
    Kohei Hayashi (1) kohei_hayashi@mist.i.u-tokyo.ac.jp
    Ryota Tomioka (1) tomioka@mist.i.u-tokyo.ac.jp
    Hisashi Kashima (12) kashima@mist.i.u-tokyo.ac.jp
  • 关键词:Tensors &#8211 ; Multi ; way arrays &#8211 ; CP ; decomposition &#8211 ; Tucker decomposition &#8211 ; Side information
  • 刊名:Data Mining and Knowledge Discovery
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:25
  • 期:2
  • 页码:298-324
  • 全文大小:1.1 MB
  • 参考文献:1. Acar E, Dunlavy DM, Kolda TG, M酶rup M (2010) Scalable tensor factorizations with missing data. In: Proceedings of the 2010 SIAM international conference on data mining, pp 701–712
    2. Adams RP, Dahl GE, Murray I (2010) Incorporating side information into probabilistic matrix factorization using Gaussian processes. In: Gr眉nwald P, Spirtes P (eds) Proceedings of the 26th conference on uncertainty in artificial intelligence, Catalina Island, California, pp 1–9
    3. Banerjee A, Basu S, Merugu S (2007) Multi-way clustering on relation graphs. In: Proceedings of the 2007 SIAM international conference on data mining
    4. Cai D, He X, Han J, Huang TS (2010) Graph regularized non-negative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(10): 2026–2038
    5. Cai JF, Candes EJ, She Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4): 1956–1982
    6. Candes EJ, Tao T (2010) The power of convex relaxation: near-optimal matrix completion. IEEE Trans Inf Theory 56(5): 2053–2080
    7. Chu W, Ghahramani Z (2009) Probabilistic models for incomplete multi-dimensional arrays. In: Proceedings of the 12th international conference on artificial intelligence and statistics
    8. Collins M, Dasgupta S, Schapire RE (2002) A generalization of principal components analysis to the exponential family. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems, vol 14. MIT Press, Cambridge
    9. Dunlavy DM, Kolda TG, Acar E (2011) Temporal link prediction using matrix and tensor factorizations. ACM Trans Knowl Discov Data 5: 10–11027
    10. Gandy S, Recht B, Yamada I (2010) Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problems 27(2): 025010
    11. Harshman RA (1970) Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. UCLA Work Pap Phonetics 16(1): 84
    12. Hayashi K, Takenouchi T, Shibata T, Kamiya Y, Kato D, Kunieda K, Yamada K, Ikeda K (2010) Exponential family tensor factorization for missing-values prediction and anomaly detection. In: Proceedings of the 10th IEEE international conference on data mining, pp 216 –225
    13. Kashima H, Kato T, Yamanishi Y, Sugiyama M, Tsuda K (2009) Link propagation: a fast semi-supervised algorithm for link prediction. In: Proceedings of the 2009 SIAM international conference on data mining
    14. Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3): 455–500
    15. Li WJ, Yeung DY (2009) Relation regularized matrix factorization. In: Proceedings of the 21st international joint conference on artificial intelligence, pp 1126–1131
    16. Lu Z, Agarwal D, Dhillon IS (2009) A spatio-temporal approach to collaborative filtering. In: Proceedings of the 3rd ACM conference on recommender systems, pp 13–20
    17. Nishimori Y, Akaho S (2010) Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 67: 106–135
    18. Plumbley MD (2005) Geometrical methods for non-negative ICA: manifolds, Lie groups and toral subalgebras. Neurocomputing 67: 161–197
    19. Porteous I, Asuncion A, Welling M (2010) Bayesian matrix factorization with side information and Dirichlet process mixtures. In: Proceedings of the 24th AAAI conference on artificial intelligence, pp 563–568
    20. Rendle S, Thieme LS (2010) Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the 3rd ACM international conference on web search and data mining, pp 81–90
    21. Salakhutdinov R, Mnih A (2008) Probabilistic matrix factorization. In: Platt JC, Koller D, Singer Y, Roweis S (eds.) Advances in neural information processing systems, vol 20. MIT Press, Cambridge
    22. Shashua A, Hazan T (2005) Non-negative tensor factorization with applications to statistics and computer vision. In: Proceedings of the 22nd international conference on machine learning, pp 792–799
    23. Srebro N (2004) Learning with matrix factorizations. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge
    24. Srebro N, Rennie J, Jaakkola T (2005) Maximum-margin matrix factorization. In: Advances in neural information processing systems, vol 17. MIT Press, Cambridge
    25. Tomioka R, Suzuki T, Hayashi K, Kashima H (2012) Statistical performance of convex tensor decomposition. In: Advances in Neural Information Processing Systems, vol 24. MIT Press, Cambridge
    26. Tucker L (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31(3): 279–311
    27. Walczak B (2001) Dealing with missing data. Part I. Chemom Intell Lab Syst 58(1): 15–27
    28. Yu K, Lafferty J, Zhu S, Gong Y (2009) Large-scale collaborative prediction using a nonparametric random effects model. In: Proceedings of the 26th international conference on machine learning, pp 1185–1192
  • 作者单位:1. Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan2. Basic Research Programs PRESTO, Synthesis of Knowledge for Information Oriented Society, Tokyo, Japan
  • ISSN:1573-756X
文摘
Most of the existing analysis methods for tensors (or multi-way arrays) only assume that tensors to be completed are of low rank. However, for example, when they are applied to tensor completion problems, their prediction accuracy tends to be significantly worse when only a limited number of entries are observed. In this paper, we propose to use relationships among data as auxiliary information in addition to the low-rank assumption to improve the quality of tensor decomposition. We introduce two regularization approaches using graph Laplacians induced from the relationships, one for moderately sparse cases and the other for extremely sparse cases. We also give present two kinds of iterative algorithms for approximate solutions: one based on an EM-like algorithms which is stable but not so scalable, and the other based on gradient-based optimization which is applicable to large scale datasets. Numerical experiments on tensor completion using synthetic and benchmark datasets show that the use of auxiliary information improves completion accuracy over the existing methods based only on the low-rank assumption, especially when observations are sparse.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700