A novel POLE mutation associated with cancers of colon, pancreas, ovaries and small intestine
详细信息    查看全文
  • 作者:Maren F. Hansen ; Jostein Johansen ; Inga Bj?rnevoll ; Anna E. Sylvander…
  • 关键词:Colorectal cancer ; Polymerase epsilon ; POLE ; Germline mutation
  • 刊名:Familial Cancer
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:14
  • 期:3
  • 页码:437-448
  • 全文大小:2,135 KB
  • 参考文献:1.Lichtenstein P, Holm NV, Verkasalo PK et al (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78-5. doi:10.-056/?NEJM200007133430-01 CrossRef PubMed
    2.Johns LE, Houlston RS (2001) A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96:2992-003. doi:10.-111/?j.-572-0241.-001.-4677.?x CrossRef PubMed
    3.Grady WM (2003) Genetic testing for high-risk colon cancer patients. Gastroenterology 124:1574-594. doi:10.-016/?S0016-5085(03)00376-7 CrossRef PubMed
    4.Jasperson KW, Tuohy TM, Neklason DW, Burt RW (2010) Hereditary and familial colon cancer. Gastroenterology 138:2044-058. doi:10.-053/?j.?gastro.-010.-1.-54 PubMed Central CrossRef PubMed
    5.Lynch HT, Lynch PM, Lanspa SJ et al (2009) Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet 76:1-8. doi:10.-111/?j.-399-0004.-009.-1230.?x PubMed Central CrossRef PubMed
    6.Gala M, Chung DC (2011) Hereditary colon cancer syndromes. Semin Oncol 38:490-99. doi:10.-053/?j.?seminoncol.-011.-5.-03 CrossRef PubMed
    7.Palles C, Cazier J-B, Howarth KM et al (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45:136-44. doi:10.-038/?ng.-503 PubMed Central CrossRef PubMed
    8.Patel SG, Ahnen DJ (2012) Familial colon cancer syndromes: an update of a rapidly evolving field. Curr Gastroenterol Rep 14:428-38. doi:10.-007/?s11894-012-0280-6 PubMed Central CrossRef PubMed
    9.Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754-760. doi:10.-093/?bioinformatics/?btp324 PubMed Central CrossRef PubMed
    10.Broad Institute Picard Tools. http://?broadinstitute.?github.?io/?picard/-/span> . Accessed 22 Jan 2015
    11.Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078-079. doi:10.-093/?bioinformatics/?btp352 PubMed Central CrossRef PubMed
    12.DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491-98. doi:10.-038/?ng.-06 PubMed Central CrossRef PubMed
    13.Van der Auwera GA, Carneiro MO, Hartl C et al (2013) From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. In: Bateman A, Pearson WR, Stein LD et al (eds) Current protocols in bioinformatics, 43rd edn. Wiley, Hoboken, pp 1-1
    14.McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297-303. doi:10.-101/?gr.-07524.-10 PubMed Central CrossRef PubMed
    15.How-to/exome analysis—SEQwiki. http://?seqanswers.?com/?wiki/?How-to/?exome_?analysis . Accessed 22 Jan 2015
    16.Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. doi:10.-093/?nar/?gkq603 PubMed Central CrossRef PubMed
    17.Vigeland MD Filtus. http://?folk.?uio.?no/?magnusv/?filtus.?html . Accessed 22 Jan 2015
    18.Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862-64CrossRef PubMed
    19.Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20:110-21. doi:10.-101/?gr.-97857.-09 PubMed Central CrossRef PubMed
    20.Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073-081. doi:10.-038/?nprot.-009.-6 CrossRef PubMed
    21.Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361-62. doi:10.-038/?nmeth.-890 CrossRef PubMed
    22.Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248-49. doi:10.-038/?nmeth0410-248 PubMed Central CrossRef PubMed
    23.Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118. doi:10.-093/?nar/?gkr407 PubMed Central CrossRef PubMed
    24.Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi:10.-038/?msb.-011.-5 PubMed Central CrossRef PubMed
    25.Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324. doi:10.-093/?nar/?gku316 PubMed Central CrossRef PubMed
    26.Shevelev IV, Hübscher U (2002) The 3-5-exonucleases. Nat Rev Mol C
  • 作者单位:Maren F. Hansen (1) (2)
    Jostein Johansen (3)
    Inga Bj?rnevoll (2)
    Anna E. Sylvander (2)
    Kristin S. Steinsbekk (4)
    P?l S?trom (3) (5)
    Arne K. Sandvik (3) (6) (7)
    Finn Drabl?s (3)
    Wenche Sjursen (1) (2)

    1. Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
    2. Department of Pathology and Medical Genetics, St. Olavs Hospital, Trondheim University Hospital, 7006, Trondheim, Norway
    3. Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
    4. Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway
    5. Department of Computer and Information Science, Faculty of Information Technology, Mathematics and Electrical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
    6. Department of Gastroenterology, St. Olavs Hospital, Trondheim University Hospital, 7006, Trondheim, Norway
    7. Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491, Trondheim, Norway
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Oncology
    Human Genetics
    Epidemiology
  • 出版者:Springer Netherlands
  • ISSN:1573-7292
文摘
In some families there is an increased risk for colorectal cancer, caused by heritable, but often unidentified genetic mutations predisposing to the disease. We have identified the likely genetic cause for disease predisposition in a large family with high burden of colorectal adenomas and carcinomas, in addition to extra-colonic cancers. This family had previously been tested for known cancer susceptibility genes, with negative results. Exome sequencing was used to identify a novel mutation, c.1373A>T (p.Tyr458Phe), in the gene for DNA polymerase epsilon catalytic subunit (POLE). This mutation is located in the active site of the exonuclease domain of the enzyme, and affects a residue that has previously been shown to be important for exonuclease activity. The first predisposing mutation identified in POLE (c.1270C>G, p.Leu424Val) was associated with colorectal cancer only, but another mutation with a broader tumour spectrum (c.1089C>A, p.Asn363Lys) has recently been reported. In the family described in the present study, carriers generally have multiple colorectal adenomas and cancer of colon, pancreas, ovaries and small intestine which represents an important broadening of the tumour spectrum of POLE mutation carriers. We also observe a large phenotypic variation among the POLE mutation carriers in this family, most likely explained by modifying variants in other genes. One POLE mutation carrier has a novel variant in EXO1 (c.458C>T, p.Ala153Val), which may contribute to a more severe phenotype. The findings in this study will have important implications for risk assessment and surveillance of POLE mutation carriers. Keywords Colorectal cancer Polymerase epsilon POLE Germline mutation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700