Sensory irritation as a basis for setting occupational exposure limits
详细信息    查看全文
  • 作者:Thomas Brüning ; Rüdiger Bartsch ; Hermann Maximillian Bolt…
  • 关键词:Local irritants ; Chemosensory perception ; Regulatory toxicology ; Interspecies extrapolation
  • 刊名:Archives of Toxicology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:88
  • 期:10
  • 页码:1855-1879
  • 全文大小:893 KB
  • 参考文献:1. Abraham MH, Hassanisadi M, Jalali-Heravi M, Ghafourian T, Cain WS, Cometto-Muniz JE (2003) Draize rabbit eye test compatibility with eye irritation thresholds in humans: a quantitative structure–activity relationship analysis. Toxicol Sci 76:384-91
    2. Alarie Y (1998) Computer-based bioassay for evaluation of sensory irritation of airborne chemicals and its limit of detection. Arch Toxicol 72:277-82
    3. Andersen I, Proctor DF (1983) Measurement of nasal mucociliary clearance. Eur J Respir Dis Suppl 127:37-0
    4. Appelman LM, Woutersen RA, Feron VJ, Hooftman RN, Notten WR (1986) Effect of variable versus fixed exposure levels on the toxicity of acetaldehyde in rats. J Appl Toxicol 6(5):331-36
    5. Arms AD, Travis CC (1988) Reference physiological parameters in pharmacokinetic modeling. Report no. EPA/600/6-88/004. US Environmental Protection Agency, Washington, DC
    6. Arts JH, Rennen MA, de Heer C (2006) Inhaled formaldehyde: evaluation of sensory irritation in relation to carcinogenicity. Regul Toxicol Pharmacol 44:144-60
    7. Barile FA (2010) Validating and troubleshooting ocular in vitro toxicology tests. J Pharmacol Toxicol Methods 61:136-45
    8. Baudouin C (2001) The pathology of dry eye. Surv Ophthalmol 45(Suppl. 2):S211–S220
    9. Baudouin C, Creuzot-Garcher C, Hoang-Xuan T, Rigeade MC, Brouquet Y, Bassols A et al (2008) Severe impairment of health-related quality of life in patients suffering from ocular surface diseases. J Fr Ophtalmol 31:369-78
    10. BASF (1992) Study on the Inhalation toxicity of 2-ethylhexanol as a vapor in rats, 90-day test. BASF AG, Abteilung Toxikologie, Ludwigshafen, Germany
    11. BASF (2001) Mono-n-Butylamine—Prenatal developmental inhalation toxicity study in Wistar rats, vapor exposure. BASF AG, Abteilung Toxikologie, Ludwigshafen, Germany
    12. Beard RR, Noe JT (1981) Aliphatic and alicyclic amines. In: Clayton GC, Clayton FE (eds) Patty's industrial hygiene and toxicology. Wiley, New York, pp 3135-173
    13. Bennett WD, Zeman KL, Jarabek AM (2003) Nasal contribution to breathing with exercise: effect of race and gender. J Appl Physiol 95:497-03
    14. Beuerman RW, Stern ME (2005) Neurogenic inflammation: a first line of defense for the ocular surface. Ocul Surf 3:S203–S206
    15. Bide RW, Armour SJ, Yee E (2000) Allometric respiration/body mass data for animals to be used for estimates of inhalation toxicity to young adult humans. J Appl Toxicol 20:273-90
    16. Blaszkewicz M, Hey K, Kiesswetter E, Kleinbeck S, Sch?per M, van Thriel C (2010) Abgrenzung und Differenzierung “irritativer-und “bel?stigender-Effekte von Gefahrstoffen. Abschlussbericht. DGUV. http://www.dguv.de/medien/ifa/de/pro/pro1/ff-fp0267/ff_fp0267_abschlussbericht.pdf
    17. Bogdanffy MS, Dreef-van der Meulen HC, Beems RB et al (1994) Chronic toxicity and oncogenicity inhalation study with vinyl acetate in the rat and mouse. Fundam Appl Toxicol 23(2):215-29
    18. Bos PM, Busschers M, Arts JH (2002) Evaluation of the sensory irritation test (alarie test) for the assessment of respiratory tract irritation. J Occup Environ Med 44:968-76
    19. Boylstein LA, Luo J, Stock MF, Alarie Y (1996) An attempt to define a just detectable effect for airborne chemicals on the respiratory tract in mice. Arch Toxicol 70:567-78
    20. Brenneman KA, James RA, Gross EA, Dorman DC (2000) Olfactory neuron loss in adult male CD rats following subchronic inhalation exposure to hydrogen sulfide. Toxicol Pathol 28(2):326-33
    21. Broderson JR, Lindsey JR, Crawford JE (1976) The role of environmental ammonia in respiratory mycoplasmosis of rats. Am J Pathol 85(1):115-30
    22. Cain WS, See LC, Tosun T (1986) Irritation and odor from formaldehyde: chamber studies. IAQ -6: managing indoor air for health and energy conservation. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, pp 126-37
    23. Cain WS, Jalowayski AA, Kleinman M, Lee N-S, Lee B-R, Ahn B-H, Magruder K, Schmidt R, Hillen BK, Warren CB, Culver BD (2004) Sensory and irritating reactions to mineral dusts: sodium borate, calcium oxide, and calcium sulfate. J Occup Environ Hyg 1:222-36
    24. Cain WS, Jalowayski AA, Schmidt R, Kleinman M, Magruder K, Lee KC, Culver BD (2008) Chemesthetic responses to airborne mineral dusts: boric acid compared to alkaline materials. Int Arch Occup Environ Health 81:337-45
    25. Carey SA, Minard KR, Trease LL, Wagner JG, Garcia GJ, Ballinger CA et al (2007) Three-dimensional mapping of ozone-induced injury in the nasal airways of monkeys using magnetic resonance imaging and morphometric techniques. Toxicol Pathol 35:27-0
    26. Celanese (1999) Methyl acetate: 28 days inhalation toxicity in rats. Hoechst Marion Roussel Deutschland GmbH, Springfield, VA, USA
    27. CEN (1993) EN 481. Workplace atmospheres—Size fraction definitions for measurements of airborne particles. European Committee for Standardization, Brussels
    28. Chiu IM, von Hehn CA, Woolf CJ (2012) Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci 15:1063-067
    29. Ciuchta HP, Dodd KT (1978) The determination of irritancy potential of surfactants using various methods of assessment. Drug Chem Toxicol 1:305-24
    30. Cloutier S, Forquer MR, Sorg BA (2006) Low level lindane exposure alters extinction of conditioned fear in rats. Toxicology 217:147-54
    31. Cometto-Muniz JE, Cain WS (1990) Thresholds for odor and nasal pungency. Physiol Behav 48:719-25
    32. Cometto-Muniz JE, Cain WS (1998) Trigeminal and olfactory sensitivity: comparison of modalities and methods of measurement. Int Arch Occup Environ Health 71:105-10
    33. Cometto-Mu?iz JE, Cain WS (1995) Relative sensitivity of the ocular trigeminal, nasal trigeminal and olfactory systems to airborne chemicals. Chem Senses 20:191-98
    34. Corley RA, Kabilan S, Kuprat AP, Carson JP, Minard KR, Jacob RE, Timchalk C, Glenny R, Pipavath S, Cox T, Wallis CD, Larson RF, Fanucchi MV, Postlethwait EM, Einstein DR (2012) Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol Sci 128:500-16
    35. Csanády GA, Filser JG (2007) A physiological toxicokinetic model for inhaled propyxlene oxide in rat and human with special emphasis on the nose. Toxicol Sci 95:37-2
    36. Dalton P (1996) Odor perception and beliefs about risk. Chem Senses 21:447-58
    37. Dalton P (1999) Cognitive influences on health symptoms from acute chemical exposure. Health Psychol 18:579-90
    38. Dalton P (2002) Odor, irritation and perception of health risk. Int Arch Occup Environ Health 75:283-90
    39. Dalton P (2004) Olfaction and anosmia in rhinosinusitis. Curr Allergy Asthma Rep 4:230-36
    40. Dalton PH, Dilks DD, Banton MI (2000) Evaluation of odor and sensory irritation thresholds for methyl isobutyl ketone in humans. Am Ind Hyg Assoc J 61:340-50
    41. David RM, Tyler TR, Ouellette R, Faber WD, Banton MI, Garman RH, Gill MW, O’Donoghue JL (1998) Evaluation of subchronic neurotoxicity of / n-butyl acetate vapor. Neurotoxicology 19:809-22
    42. David RM, Tyler TR, Ouellette R, Faber WD, Banton MI (2001) Evaluation of subchronic toxicity of / n-butyl acetate vapor. Food Chem Toxicol 39:877-86
    43. Deese DE, Joyner RE (1969) Vinyl acetate: a study of chronic human exposure. Am Ind Hyg Assoc J 30:449-57
    44. DFG (2006) MAK value documentation methyl methacrylate. http://onlinelibrary.wiley.com/doi/10.1002/3527600418.mb8062e0026/pdf
    45. DFG (2012) MAK value documentation 2-ethylhexanol. http://onlinelibrary.wiley.com/doi/10.1002/3527600418.mb10476kskd0053/pdf
    46. Dick RB, Ahlers H (1998) Chemicals in the workplace: incorporating human neurobehavioral testing into the regulatory process. Am J Ind Med 33:439-53
    47. Ding X, Dahl AR (2003) Olfactory mucosa: composition, enzymatic localization and metabolism. In: Doty R (ed) Handbook of olfaction and gustation. Marcek Dekker, New York, pp 51-3
    48. Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes p450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149-73
    49. Dorman DC, Struve MF, Gross EA, Brenneman KA (2004) Respiratory tract toxicity of inhaled hydrogen sulfide in Fischer-344 rats, Sprague-Dawley rats, and B6C3F1 mice following subchronic (90-day) exposure. Toxicol Appl Pharmacol 198(1):29-9
    50. Dorman DC, Struve MF, Wong BA, Gross EA, Parkinson C, Willson GA, Tan YM, Campbell JL, Teeguarden JG, Clewell HJ 3rd, Andersen ME (2008) Derivation of an inhalation reference concentration based upon olfactory neuronal loss in male rats following subchronic acetaldehyde inhalation. Inhal Toxicol 20:245-56
    51. Doty RL, Cometto-Mu?iz JE, Jalowayski AA, Dalton P, Kendal-Reed M, Hodgson M (2004) Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit Rev Toxicol 34:85-42
    52. ECETOC (2003) Derivation of assessment factors for human health risk assessment. Technical report 86
    53. ECETOC (2010) Guidance on assessment factors to derive a DNEL. Technical report 110
    54. Edling C, Lundberg P (2000) The significance of neurobehavioral tests for occupational exposure limits: an example from Sweden. Neurotoxicology 21:653-58
    55. Ernstgard L, Iregren A, Sjogren B, Johanson G (2006) Acute effects of exposure to vapours of acetic acid in humans. Toxicol Lett 165:22-0
    56. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175-91
    57. Fiedler N, Kipen H, Ohman-Strickland P et al (2008) Sensory and cognitive effects of acute exposure to hydrogen sulfide. Environ Health Perspect 116(1):78-5
    58. Flury F, Wirth W (1933) Zur Toxikologie der L?sungsmittel. Arch Gewerbepathol Gewerbehyg 5:1-0
    59. Franck C, Skov P (1991) Evaluation of two different questionnaires used for diagnosing ocular manifestations in the sick building syndrome on the basis of an objective index. Indoor Air 1:5-1
    60. Frederick CB, Bush ML, Lomax LG, Black KA, Finch L, Kimbell JS, Morgan KT, Subramaniam RR, Morris JB, Ultman JS (1998) Application of a hybrid computational fluid dynamics and physiologically based Inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Toxicol Appl Pharmacol 152:211-31
    61. Garcia GJ, Schroeter JD, Segal RA, Stanek J, Foureman GL, Kimbell JS (2009) Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability. Inhal Toxicol 21:607-18
    62. Gharib SA, Nguyen E, Altemeier WA, Shaffer SA, Doneanu CE, Goodlett DR, Schnapp LM (2010) Of mice and men: comparative proteomics of bronchoalveolar fluid. Eur Respir J 35:1388-395
    63. Green GM, Jakab GJ, Low RB, Davis GS (1977) Defense mechanisms of the respiratory membrane. Am Rev Respir Dis 115:479-14
    64. Griese M (1999) Pulmonary surfactant in health and human lung disease: state of the art. Eur Respir J 13:1455-476
    65. Harkema JR (1991) Comparative aspects of nasal airway anatomy: relevance to inhalation toxicology. Toxicol Pathol 19:321-36
    66. Harkema JR, Carey SA, Wagner JG (2006) The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 34:252-69
    67. Hatt H (2000) Geruch. In: Schimdt RF, Schaible HG (eds) Neuro- und sinnesphysiologie. Springer, Berlin, pp 375-87
    68. Haumann K, Kiesswetter E, van Thriel C, Blaszkewicz M, Golka K, Seeber A (2003) Breathing and heart rate during experimental solvent exposure of young adults with self-reported multiple chemical sensitivity (SMCS). Neurotoxicology 24:179-86
    69. Hext PM, Pinto PJ, Gaskell BA (2001) Methyl methacrylate toxicity in rat nasal epithelium: investigation of the time course of lesion development and recovery from short term vapour inhalation. Toxicology 156(2-):119-28
    70. Hey K, Juran S, Sch?per M, Kleinbeck S, Kiesswetter E, Blaszkewicz M, Golka K, Brüning T, van Thriel C (2009) Neurobehavioral effects during exposures to propionic acid—an indicator of chemosensory distraction? Neurotoxicology 30:1223-232
    71. Hoffmann J, Ihrig A, Triebig G (2004a) Expositionsstudie zur arbeitsmedizinischen Bedeutung Ammoniak-assoziierter gesundheitlicher Effekte. Arbeitsmed Sozialmed Umweltmed 39:390-01
    72. Hoffmann J, Borisch S, Ihrig A, Triebig G (2004b) Experimentelle Studie zur Wirkung einer Ammoniakexposition auf den Atemtrakt bei k?rperlicher Belastung. Arbeitsmed Sozialmed Umweltmed 39:218
    73. Hu X, Wegman DH, Eisen EA, Woskie SR, Smith RG (1992) Dose related acute irritant symptom responses to occupational exposure to sodium borate dusts. Br J Ind Med 49:706-13
    74. Hummel T (2000) Assessment of intranasal trigeminal function. Int J Psychophysiol 36:147-55
    75. Hummel T, Kraetsch HG, Pauli E, Kobal G (1998) Responses to nasal irritation obtained from the human nasal mucosa. Rhinology 36(4):168-72
    76. Ihrig A, Hoffmann J, Triebig G (2006) Examination of the influence of personal traits and habituation on the reporting of complaints at experimental exposure to ammonia. Int Arch Occup Environ Health 79:332-38
    77. Iregren A, Lof A, Toomingas A, Wang Z (1993) Irritation effects from experimental exposure to n-butyl acetate. Am J Ind Med 24(6):727-42
    78. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203-10
    79. Kareken DA, Sabri M, Radnovich AJ, Claus E, Foresman B, Hector D et al (2004) Olfactory system activation from sniffing: effects in piriform and orbitofrontal cortex. Neuroimage 22:456-65
    80. Kelly JT, Prasad AK, Wexler AS (2000) Detailed flow patterns in the nasal cavity. J Appl Physiol 89:323-37
    81. Kerns WD, Pavkov KL, Donofrio DJ, Gralla EJ, Swenberg JA (1983) Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Res 43(9):4382-392
    82. Kiesswetter E, Cv Thriel, Schaper M, Blaszkewicz M, Seeber A (2005) Eye blinks as indicator for sensory irritation during constant and peak exposures to 2-ethylhexanol. Environ Toxicol Pharmacol 19:531-41
    83. Kimbell JS, Gross EA, Joyner DR, Godo MN, Morgan KT (1993) Application of computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat. Toxicol Appl Phamracol 121:253-63
    84. Klaassen CD (ed) (2008) Casarett and Doull’s toxicology—the basic science of poisons, 7th edn. McGraw-Hill, New York
    85. Kleinbeck S, Juran SA, Kiesswetter E, Sch?per M, Blaszkewicz M, Brüning T, van Thriel C (2008) Evaluation of ethyl acetate on three dimensions: investigation of behavioral, physiological and psychological indicators of adverse chemosensory effects. Toxicol Lett 182:102-09
    86. Kleinbeck S, Schaper M, Juran SA, Kiesswetter E, Blaszkewicz M, Golka K et al (2011) Odor thresholds and breathing changes of human volunteers as consequences of sulphur dioxide exposure considering individual factors. Saf Health Work 2:355-64
    87. Kobal G (1985) Pain-related electrical potentials of the human nasal mucosa elicited by chemical stimulation. Pain 22(2):151-63
    88. Koelega HS (1987) Introduction: environmental annoyance. In: Koelega HS (ed) Environmental annoyance: characterization, measurement, and control. Elsevier, Amsterdam, pp 1-
    89. Krinke GJ (ed) (1999) The laboratory rat. Academic Press, San Diego
    90. Lacroix JS, Landis BN (2008) Neurogenic inflammation of the upper airway mucosa. Rhinology 46:163-65
    91. Lang I, Bruckner T, Triebig G (2008) Formaldehyde and chemosensory irritation in humans: a controlled human exposure study. Regul Toxicol Pharmacol 50:23-6
    92. Lanosa MJ, Willis DN, Jordt S, Morris JB (2010) Role of metabolic activation and the trpa1 receptor in the sensory irritation response to styrene and naphthalene. Toxicol Sci 115:589-95
    93. Lilja J, Forsby A (2004) Development of a sensory neuronal cell model for the estimation of mild eye irritation. Altern Lab Anim 32:339-43
    94. Lilja J, Lindegren H, Forsby A (2007) Surfactant-induced TRPV1 activity—a novel mechanism for eye irritation? Toxicol Sci 99:174-80
    95. Lomax LG, Krivanek ND, Frame SR (1997) Chronic inhalation toxicity and oncogenicity of methyl methacrylate in rats and hamsters. Food Chem Toxicol 35(3-):393-07
    96. Miller RR, Young JT, Kociba RJ et al (1985) Chronic toxicity and oncogenicity bioassay of inhaled ethyl acrylate in Fischer 344 rats and B6C3F1 mice. Drug Chem Toxicol 8(1-):1-2
    97. Millqvist E (2000) Cough provocation with capsaicin is an objective way to test sensory hyperreactivity in patients with asthma-like symptoms. Allergy 55:546-50
    98. Millqvist E, Ternesten-Hasseus E, Bende M (2008) Inhaled ethanol potentiates the cough response to capsaicin in patients with airway sensory hyperreactivity. Pulm Pharmacol Ther 21:794-97
    99. Mombaerts P (2001) The human repertoire of odorant receptor genes and pseudogenes. Annu Rev Genomics Hum Genet 2:493-10
    100. Monticello TM, Miller FJ, Morgan KT (1991) Regional increases in rat nasal epithelial cell proliferation following acute and subchronic inhalation of formaldehyde. Toxicol Appl Pharmacol 111:409-21
    101. Monticello TM, Swenberg JA, Gross EA, Leininger JR, Kimbell JS, Seilkop S, Starr TB, Gibson JE, Morgan KT (1996) Correlation of regional and nonlinear formaldehyde-induced nasal cancer with proliferating populations of cells. Cancer Res 56:1012-022
    102. Morris JB (2002) Sensory nerve-mediated nasal vasodilatory response to inspired ethyl acrylate. Inhal Toxicol 14(6):585-97
    103. Morris JB, Frederick CB (1995) Upper respiratory tract uptake of acrylate esters and acid vapors. Inhal Toxicol 7:557-74
    104. Morris JB, Shusterman DJ (2010) Toxicology of the nose and upper airways. Informa Healthcare, New York
    105. Morris JB, Hassett DN, Blanchard KT (1993) A physiologically based pharmacokinetic model for nasal uptake and metabolism of nonreactive vapors. Toxicol Appl Pharmacol 123:120-29
    106. Mueller JU, Bruckner T, Triebig G (2013) Exposure study to examine chemosensory effects of formaldehyde on hyposensitive and hypersensitive males. Int Arch Occup Environ Health 86:107-17
    107. Muttray A, Jung D, Klimek L, Kreiner C (2002) Effects of an external exposure to 200?ppm methyl ethyl ketone on nasal mucosa in healthy volunteers. Int Arch Occup Environ Health 75:197-00
    108. Muttray A, Gosepath J, Brieger J, Falden A, Zagar C, Mayer-Popken O, Ro?bach B, Jung D, Scherhag H, Mann W, Letzel S (2007) Zur Wirkung von 50?ppm Methylmethacrylat auf die oberen Atemwege gesunder Probanden. Arbeitsmed Sozialmed Umweltmed 42:105
    109. Muttray A, Gosepath J, Brieger J, Faldum A, Pribisz A, Mayer-Popken O, Jung D, Rossbach B, Mann W, Letzel S (2009) No acute effects of an exposure to 50?ppm acetaldehyde on the upper airways. Int Arch Occup Environ Health 82:481-88
    110. Mygind N, Dahl R (1998) Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev 29:3-2
    111. OSHA (1989) Air contaminants: final rule. Fed Regist 54:2332-983
    112. Paustenbach DJ, Gaffney SH (2005) The role of odor and irritation, as well as risk perception, in the setting of occupational exposure limits. Int Arch Occup Environ Health 79:339-42
    113. Paustenbach D, Alarie Y, Kulle T, Schachter N, Smith R, Swenberg J, Witschi H, Horowitz SB (1997) A recommended occupational exposure limit for formaldehyde based on irritation. J Toxicol Environ Health 50:217-63
    114. Petrova M, Diamond J, Schuster B, Dalton P (2008) Evaluation of trigeminal sensitivity to ammonia in asthmatics and healthy human volunteers. Inhal Toxicol 20:1085-092
    115. Renne RA, Gideon KM (2006) Types and patterns of response in the larynx following inhalation. Toxicol Pathol 34:281-85
    116. Roger LJ, Kehrl HR, Hazucha M, Horstman DH (1985) Bronchoconstriction in asthmatics exposed to sulfur dioxide during repeated exercise. J Appl Physiol 59:784-91
    117. Rohlman DS, Lucchini R, Anger WK, Bellinger DC, van Thriel C (2008) Neurobehavioral testing in human risk assessment. Neurotoxicology 29:556-67
    118. Rotman HH, Fliegelman MJ, Moore T et al (1983) Effects of low concentrations of chlorine on pulmonary function in humans. J Appl Physiol Respir Environ Exerc Physiol 54(4):1120-124
    119. Rusch GM, Clary JJ, Rinehart WE, Bolte HF (1983) A 26-week inhalation toxicity study with formaldehyde in the monkey, rat, and hamster. Toxicol Appl Pharmacol 68(3):329-43
    120. Sahin-Yilmaz A, Naclerio RM (2011) Anatomy and physiology of the upper airway. Proc Am Thorac Soc 8:31-9
    121. Schaper M (1993) Development of a database for sensory irritants and its use in establishing occupational exposure limits. Am Ind Hyg Assoc J 54:488-44
    122. Schins RP, Emmen H, Hoogendijk L, Borm PJ (2000) Nasal inflammatory and respiratory parameters in human volunteers during and after repeated exposure to chlorine. Eur Respir J 16(4):626-32
    123. Schroeter JD, Kimbell JS, Andersen ME, Dorman DC (2006) Use of a pharmacokinetic-driven computational fluid dynamics model to predict nasal extraction of hydrogen sulfide in rats and humans. Toxicol Sci 94:359-67
    124. Shelley SA, Paciga JE, Balis JU (1984) Lung surfactant phospholipids in different animal species. Lipids 19(11):857-62
    125. Shusterman D (2001) Odor-associated health complaints: competing explanatory models. Chem Senses 26:339-43
    126. Shusterman D (2003) Toxicology of nasal irritants. Curr Allergy Asthma Rep 3:258-65
    127. Shusterman D, Hummel T (2009) Symposium overview: nasal trigeminal function: qualitative, quantitative, and temporal effects. Ann NY Acad Sci 1170:181-83
    128. Shusterman D, Murphy MA, Balmes J (2003) Influence of age, gender, and allergy status on nasal reactivity to inhaled chlorine. Inhal Toxicol 15:1179-189
    129. Shusterman D, Tarun A, Murphy MA, Morris J (2005) Seasonal allergic rhinitic and normal subjects respond differentially to nasal provocation with acetic acid vapor. Inhal Toxicol 17(3):147-52
    130. Sobel N, Khan RM, Hartley CA, Sullivan EV, Gabrieli JD (2000) Sniffing longer rather than stronger to maintain olfactory detection threshold. Chem Senses 25:1-
    131. Stevenson RJ (2010) An initial evaluation of the functions of human olfaction. Chem Senses 35:3-0
    132. Story GM (2006) The emerging role of trp channels in mechanisms of temperature and pain sensation. Curr Neuropharmacol 4:183-96
    133. Sundblad BM, Larsson BM, Acevedo F et al (2004) Acute respiratory effects of exposure to ammonia on healthy persons. Scand J Work Environ Health 30(4):313-21
    134. Sweeney LM, Andersen ME, Gargas ML (2004) Ethyl acrylate risk assessment with a hybrid computational fluid dynamics and physiologically based nasal dosimetry model. Toxicol Sci 79:394-03
    135. Tada O, Nakasaki K, Fukabori S (1974) On the method of evaluating the exposure to methanol and methyl acetate (Japanese). J Sci Labour 50:239-48
    136. Tan BK, Schleimer RP, Kern RC (2010) Perspectives on the etiology of chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg 18:21-6
    137. Teeguarden JG, Bogdanffy MS, Covington TR, Tan C, Jarabek AM (2008) A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry. Inhal Toxicol 20:375-90
    138. Thürauf N, Friedel I, Hummel C, Kobal G (1991) The mucosal potential elicited by noxious chemical stimuli with CO2 in rats: is it a peripheral nociceptive event? Neurosci Lett 128(2):297-00
    139. Torén K, Brisman J, Hagberg S, Karlsson G (1996) Improved nasal clearance among pulp-mill workers after reduction of lime dust. Scand J Work Environ Health 22:102-07
    140. van Thriel C, Kiesswetter E, Blaszkewicz M, Golka K, Seeber A (2003) Neurobehavioral effects during experimental exposure to 1-octanol and isopropanol. Scand J Work Environ Health 29:143-51
    141. van Thriel C, Kiesswetter E, Schaper M, Blaszkewicz M, Golka K, Seeber A (2005) An integrative approach considering acute symptoms and intensity ratings of chemosensory sensations during experimental exposures. Environ Toxicol Pharmacol 19:589-98
    142. van Thriel C, Triebig G, Bolt HM (2006a) Editorial: evaluation of chemosensory effects due to occupational exposures. Int Arch Occup Environ Health 79:265-67
    143. van Thriel C, Schaper M, Kiesswetter E, Kleinbeck S, Juran S, Blaszkewicz M et al (2006b) From chemosensory thresholds to whole body exposures—experimental approaches evaluating chemosensory effects of chemicals. Int Arch Occup Environ Health 79:308-21
    144. van Thriel C, Kiesswetter E, Sch?per M, Blaszkewicz M, Golka K, Juran S, Kleinbeck S, Seeber A (2007) From neurotoxic to chemosensory effects: new insights on acute solvent neurotoxicity exemplified by acute effects of 2-ethylhexanol. Neurotoxicology 28:347-55
    145. van Thriel C, Sch?per M, Kleinbeck S, Kiesswetter E, Zimmermann A, Golka K, Blaszkewicz M, Brüning T, Hey K (2010) Reizwirkungen durch Ethylacrylat—Ergebnisse experimenteller Expositionen. Arbeitsmed Sozialmed. Umweltmed 45:285
    146. Vandewauw I, Owsianik G, Voets T (2013) Systematic and quantitative mRNA expression analysis of trp channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci 14:21
    147. Veiga Moreira TH, Gover TD, Weinreich D (2007) Electrophysiological properties and chemosensitivity of acutely dissociated trigeminal somata innervating the cornea. Neuroscience 148:766-74
    148. Wegman DH, Eisen EA, Hu X, Woskie SR, Smith RG, Garabrant DH (1994) Acute and chronic respiratory effects of sodium borate particulate exposures. Environ Health Perspect 102(Suppl. 7):119-28
    149. Widdicombe JG (1982) Pulmonary and respiratory tract receptors. J Exp Biol 100:41-7
    150. Wilmer JW, Woutersen RA, Appelman LM, Leeman WR, Feron VJ (1989) Subchronic (13-week) inhalation toxicity study of formaldehyde in male rats: 8-hour intermittent versus 8-hour continuous exposures. Toxicol Lett 47(3):287-93
    151. Wise PM, Canty TM, Wysocki CJ (2005) Temporal integration of nasal irritation from ammonia at threshold and supra-threshold levels. Toxicol Sci 87:223-31
    152. Wise PM, Canty TM, Wysocki CJ (2006) Temporal integration in nasal lateralization of ethanol. Chem Senses 31:227-35
    153. Wolf DC, Morgan KT, Gross EA et al (1995) Two-year inhalation exposure of female and male B6C3F1 mice and F344 rats to chlorine gas induces lesions confined to the nose. Fundam Appl Toxicol 24(1):111-31
    154. Wolkoff P, Nielsen GD (2010) Non-cancer effects of formaldehyde and relevance for setting an indoor air guideline. Environ Int 36:788-99
    155. Wolkoff P, Skov P, Franck C, Petersen LN (2003) Eye irritation and environmental factors in the office environment—hypotheses, causes and a physiological model. Scand J Work Environ Health 29:411-30
    156. Woutersen RA, van Garderen-Hoetmer A, Bruijntjes JP, Zwart A, Feron VJ (1989) Nasal tumours in rats after severe injury to the nasal mucosa and prolonged exposure to 10 ppm formaldehyde. J Appl Toxicol 9(1):39-6
    157. Wright JR, Clementis JA (1987) Metabolism and turnover of lung surfactant. Am Rev Respir Dis 136:426
    158. Zwart A, Woutersen RA, Wilmer JW, Spit BJ, Feron VJ (1988) Cytotoxic and adaptive effects in rat nasal epithelium after 3-day and 13-week exposure to low concentrations of formaldehyde vapour. Toxicology 51(1):87-9
  • 作者单位:Thomas Brüning (1)
    Rüdiger Bartsch (2)
    Hermann Maximillian Bolt (3)
    Herbert Desel (4)
    Hans Drexler (5)
    Ursula Gundert-Remy (6)
    Andrea Hartwig (7)
    Rudolf J?ckh (8)
    Edgar Leibold (8)
    Dirk Pallapies (1)
    Albert W. Rettenmeier (9)
    Gerhard Schlüter (1)
    Gisela Stropp (10)
    Kirsten Sucker (1)
    Gerhard Triebig (11)
    G?tz Westphal (1)
    Christoph van Thriel (3)

    1. Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany
    2. Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (MAK Commission), TU Munich, Hohenbachernstr. 15-17, 85350, Freising-Weihenstephan, Germany
    3. Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
    4. University Medical Center G?ttingen, Georg-August-University, GIZ-Nord Poisons Center, Forensic and Clinical Toxicology Lab, Robert-Koch-Str. 40, 37075, G?ttingen, Germany
    5. Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg (IPASUM), Schillerstr. 25/29, 91054, Erlangen, Germany
    6. Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195, Berlin, Germany
    7. Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Adenauerring 20, 76131, Karlsruhe, Germany
    8. BASF SE, 67056, Ludwigshafen, Germany
    9. Institute for Medical Informatics, Biometry and Epidemiology (IMIBE) of the University of Essen, Hufelandstr. 55, 45122, Essen, Germany
    10. Bayer Pharma AG, Global Drug Discovery - Global Early Development -Product Stewardship Industrial Chemicals & Operations Research Center, Aprather Weg, Building 514, 42096, Wuppertal, Germany
    11. Institute and Outpatient Clinic for Occupational and Social Medicine, University Heidelberg, Vo?str. 2, 69115, Heidelberg, Germany
  • ISSN:1432-0738
文摘
There is a need of guidance on how local irritancy data should be incorporated into risk assessment procedures, particularly with respect to the derivation of occupational exposure limits (OELs). Therefore, a board of experts from German committees in charge of the derivation of OELs discussed the major challenges of this particular end point for regulatory toxicology. As a result, this overview deals with the question of integrating results of local toxicity at the eyes and the upper respiratory tract (URT). Part 1 describes the morphology and physiology of the relevant target sites, i.e., the outer eye, nasal cavity, and larynx/pharynx in humans. Special emphasis is placed on sensory innervation, species differences between humans and rodents, and possible effects of obnoxious odor in humans. Based on this physiological basis, Part 2 describes a conceptual model for the causation of adverse health effects at these targets that is composed of two pathways. The first, “sensory irritation-pathway is initiated by the interaction of local irritants with receptors of the nervous system (e.g., trigeminal nerve endings) and a downstream cascade of reflexes and defense mechanisms (e.g., eyeblinks, coughing). While the first stages of this pathway are thought to be completely reversible, high or prolonged exposure can lead to neurogenic inflammation and subsequently tissue damage. The second, “tissue irritation-pathway starts with the interaction of the local irritant with the epithelial cell layers of the eyes and the URT. Adaptive changes are the first response on that pathway followed by inflammation and irreversible damages. Regardless of these initial steps, at high concentrations and prolonged exposures, the two pathways converge to the adverse effect of morphologically and biochemically ascertainable changes. Experimental exposure studies with human volunteers provide the empirical basis for effects along the sensory irritation pathway and thus, “sensory NOAEChuman-can be derived. In contrast, inhalation studies with rodents investigate the second pathway that yields an “irritative NOAECanimal.-Usually the data for both pathways is not available and extrapolation across species is necessary. Part 3 comprises an empirical approach for the derivation of a default factor for interspecies differences. Therefore, from those substances under discussion in German scientific and regulatory bodies, 19 substances were identified known to be human irritants with available human and animal data. The evaluation started with three substances: ethyl acrylate, formaldehyde, and methyl methacrylate. For these substances, appropriate chronic animal and a controlled human exposure studies were available. The comparison of the sensory NOAEChuman with the irritative NOAECanimal (chronic) resulted in an interspecies extrapolation factor (iEF) of 3 for extrapolating animal data concerning local sensory irritating effects. The adequacy of this iEF was confirmed by its application to additional substances with lower data density (acetaldehyde, ammonia, n-butyl acetate, hydrogen sulfide, and 2-ethylhexanol). Thus, extrapolating from animal studies, an iEF of 3 should be applied for local sensory irritants without reliable human data, unless individual data argue for a substance-specific approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700