Inhibition of the cardiac Na+ channel α-subunit Nav1.5 by propofol and dexmedetomidine
详细信息    查看全文
  • 作者:Carsten Stoetzer ; Svenja Reuter…
  • 关键词:Propofol ; Dexmedetomidine ; Patch ; clamp ; Cardiac sodium channel ; Nav1.5 ; Electrophysiology
  • 刊名:Naunyn-Schmiedeberg's Archives of Pharmacology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:389
  • 期:3
  • 页码:315-325
  • 全文大小:1,202 KB
  • 参考文献:Altmayer P, Buch U, Buch HP (1995) Propofol binding to human blood proteins. Arzneimittel-Forschung 45(10):1053–1056PubMed
    Bennett PB, Yazawa K, Makita N, George Jr AL (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376(6542):683–685CrossRef PubMed
    Burjorjee JE, Milne B (2002) Propofol for electrical storm; a case report of cardioversion and suppression of ventricular tachycardia by propofol. Can J Anaesth = J Can D’ Anesth 49(9):973–977CrossRef
    Butterworth 4th JF (2010) Models and mechanisms of local anesthetic cardiac toxicity: a review. Reg Anesth Pain Med 35(2):167–176CrossRef PubMed
    Catterall WA, Goldin AL, Waxman SG, International Union of Pharmacology (2003) International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol Rev 55(4):575–578CrossRef PubMed
    Chen BS, Peng H, Wu SN (2009) Dexmedetomidine, an alpha2-adrenergic agonist, inhibits neuronal delayed-rectifier potassium current and sodium current. British J Anaesth 103(2):244–254CrossRef
    Chrysostomou C, Beerman L, Shiderly D, Berry D, Morell VO, Munoz R (2008) Dexmedetomidine: a novel drug for the treatment of atrial and junctional tachyarrhythmias during the perioperative period for congenital cardiac surgery: a preliminary study. Anesth Analg 107(5):1514–1522CrossRef PubMed
    Chrysostomou C, Morell VO, Wearden P, Sanchez-de-Toledo J, Jooste EH, Beerman L (2013) Dexmedetomidine: therapeutic use for the termination of reentrant supraventricular tachycardia. Congenit Heart Dis 8(1):48–56CrossRef PubMed
    Clarkson CW, Hondeghem LM (1985) Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiol 62(4):396–405CrossRef
    Dutta S, Lal R, Karol MD, Cohen T, Ebert T (2000) Influence of cardiac output on dexmedetomidine pharmacokinetics. J Pharm Sci 89(4):519–527CrossRef PubMed
    Gupta T, Khera S, Kolte D, Aronow WS, Iwai S (2015) Antiarrhythmic properties of ranolazine: a review of the current evidence. Int J Cardiol 187:66–74CrossRef PubMed
    Haeseler G, Stormer M, Bufler J, Dengler R, Hecker H, Piepenbrock S, Leuwer M (2001) Propofol blocks human skeletal muscle sodium channels in a voltage-dependent manner. Anesth Analg 92(5):1192–1198CrossRef PubMed
    Haeseler G, Karst M, Foadi N, Gudehus S, Roeder A, Hecker H, Dengler R, Leuwer M (2008) High-affinity blockade of voltage-operated skeletal muscle and neuronal sodium channels by halogenated propofol analogues. British J Pharmacol 155(2):265–275CrossRef
    Hanouz JL, Yvon A, Flais F, Rouet R, Ducouret P, Bricard H, Gerard JL (2003) Propofol decreases reperfusion-induced arrhythmias in a model of "border zone" between normal and ischemic-reperfused guinea pig myocardium. Anesth Analg 97(5):1230–1238CrossRef PubMed
    Hermann R, Vettermann J (1992) Change of ectopic supraventricular tachycardia to sinus rhythm during administration of propofol. Anesth Analg 75(6):1030–1032CrossRef PubMed
    Hoy SM, Keating GM (2011) Dexmedetomidine: a review of its use for sedation in mechanically ventilated patients in an intensive care setting and for procedural sedation. Drugs 71(11):1481–1501CrossRef PubMed
    Hug Jr CC, McLeskey CH, Nahrwold ML, Roizen MF, Stanley TH, Thisted RA, Walawander CA, White PF, Apfelbaum JL, Grasela TH (1993) Hemodynamic effects of propofol: data from over 25,000 patients. Anesth Analg 77(4 Suppl):S21–S29PubMed
    Iirola T, Aantaa R, Laitio R, Kentala E, Lahtinen M, Wighton A, Garratt C, Ahtola-Satila T, Olkkola KT (2011) "Pharmacokinetics of prolonged infusion of high-dose dexmedetomidine in critically ill patients". Crit Care (London, England) 15(5):R257PubMedCentral CrossRef
    Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen JP, Scheinin M, Schwilden H, Schuttler J, Olkkola KT (2012) Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. British J Anaesth 108(3):460–468CrossRef
    Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, Bratty JR, Takala J, Dexmedetomidine for Long-Term Sedation Investigators (2012a) Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. Jama 307(11):1151–1160CrossRef PubMed
    Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, Bratty JR, Takala J, Dexmedetomidine for Long-Term Sedation Investigators (2012b) Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. Jama 307(11):1151–1160CrossRef PubMed
    Jin R, Liu H, Jin WZ, Shi JD, Jin QH, Chu CP, Qiu DL (2015) Propofol depresses cerebellar Purkinje cell activity via activation of GABA and glycine receptors in vivo in mice. Eur J Pharmacol 764:87–93CrossRef PubMed
    Kaivosaari S, Toivonen P, Aitio O, Sipila J, Koskinen M, Salonen JS, Finel M (2008) Regio- and stereospecific N-glucuronidation of medetomidine: the differences between UDP glucuronosyltransferase (UGT) 1A4 and UGT2B10 account for the complex kinetics of human liver microsomes. Drug Metab Dispos: Biol Fate Chem 36(8):1529–1537CrossRef
    Kannan S, Sherwood N (2002) Termination of supraventricular tachycardia by propofol. British J Anaesth 88(6):874–875CrossRef
    Kotani Y, Shimazawa M, Yoshimura S, Iwama T, Hara H (2008) The experimental and clinical pharmacology of propofol, an anesthetic agent with neuroprotective properties. CNS Neurosci Ther 14(2):95–106CrossRef PubMed
    Liu Q, Kong AL, Chen R, Qian C, Liu SW, Sun BG, Wang LX, Song LS, Hong J (2011) Propofol and arrhythmias: two sides of the coin. Acta Pharmacol Sinica 32(6):817–823CrossRef
    Ludbrook GL, Upton RN, Grant C, Gray EC (1996) Brain and blood concentrations of propofol after rapid intravenous injection in sheep, and their relationships to cerebral effects. Anaesth Intensive Care 24(4):445–452PubMed
    Lynagh T, Laube B (2014) Opposing effects of the anesthetic propofol at pentameric ligand-gated ion channels mediated by a common site. J Neurosci: Off J Soc Neurosci 34(6):2155–2159CrossRef
    Maruta T, Nemoto T, Satoh S, Kanai T, Yanagita T, Wada A, Tsuneyoshi I (2011) Dexmedetomidine and clonidine inhibit the function of Na(v)1.7 independent of alpha(2)-adrenoceptor in adrenal chromaffin cells". J Anesth 25(4):549–557CrossRef PubMed
    Miro O, de la Red G, Fontanals J (2000) Cessation of paroxysmal atrial fibrillation during acute intravenous propofol administration. Anesthesiol 92(3):910CrossRef
    Mulpuru SK, Patel DV, Wilbur SL, Vasavada BC, Furqan T (2008) Electrical storm and termination with propofol therapy: a case report. Int J Cardiol 128(1):e6–e8CrossRef PubMed
    Nau C, Wang GK (2004) Interactions of local anesthetics with voltage-gated Na + channels. J Membr Biol 201(1):1–8CrossRef PubMed
    Nau C, Seaver M, Wang SY, Wang GK (2000a) Block of human heart hH1 sodium channels by amitriptyline. J Pharmacol Exp Ther 292(3):1015–1023PubMed
    Nau C, Wang SY, Strichartz GR, Wang GK (2000b) Block of human heart hH1 sodium channels by the enantiomers of bupivacaine. Anesthesiology 93(4):1022–1033CrossRef PubMed
    O’Reilly AO, Eberhardt E, Weidner C, Alzheimer C, Wallace BA, Lampert A (2012) Bisphenol a binds to the local anesthetic receptor site to block the human cardiac sodium channel. PLoS One 7(7):e41667PubMedCentral CrossRef PubMed
    Oda A, Iida H, Tanahashi S, Osawa Y, Yamaguchi S, Dohi S (2007) Effects of alpha2-adrenoceptor agonists on tetrodotoxin-resistant Na + channels in rat dorsal root ganglion neurons. Eur J Anaesthesiol 24(11):934–941CrossRef PubMed
    Ouyang W, Wang G, Hemmings Jr HC (2003) Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals". Mol Pharmacol 64(2):373–381CrossRef PubMed
    Owczuk R, Wujtewicz MA, Sawicka W, Polak-Krzeminska A, Suszynska-Mosiewicz A, Raczynska K, Wujtewicz M (2008) Effect of anaesthetic agents on p-wave dispersion on the electrocardiogram: comparison of propofol and desflurane. Clin Exp Pharmacol Physiol 35(9):1071–1076CrossRef PubMed
    Pignier C, Rougier JS, Vie B, Culie C, Verscheure Y, Vacher B, Abriel H, Le Grand B (2010) Selective inhibition of persistent sodium current by F 15845 prevents ischaemia-induced arrhythmias. Br J Pharmacol 161(1):79–91PubMedCentral CrossRef PubMed
    Raoof AA, van Obbergh LJ, de Ville de Goyet J, Verbeeck RK (1996) Extrahepatic glucuronidation of propofol in man: possible contribution of gut wall and kidney. Eur J Clin Pharmacol 50(1–2):91–96CrossRef PubMed
    Rehberg B, Duch DS (1999) Suppression of central nervous system sodium channels by propofol. Anesthesiology 91(2):512–520CrossRef PubMed
    Richards MJ, Skues MA, Jarvis AP, Prys-Roberts C (1990) Total i.v. anaesthesia with propofol and alfentanil: dose requirements for propofol and the effect of premedication with clonidine. Br J Anaesth 65(2):157–163CrossRef PubMed
    Saint DA (2006) The role of the persistent Na(+) current during cardiac ischemia and hypoxia. J Cardiovasc Electrophysiol 17(Suppl 1):S96–S103CrossRef PubMed
    Schulze V, Stoetzer C, O’Reilly AO, Eberhardt E, Foadi N, Ahrens J, Wegner F, Lampert A, de la Roche J, Leffler A (2014) The opioid methadone induces a local anaesthetic-like inhibition of the cardiac Na(+) channel, Na(v)1.5. Br J Pharmacol 171(2):427–437PubMedCentral CrossRef PubMed
    Shafer A, Doze VA, Shafer SL, White PF (1988) Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology 69(3):348–356CrossRef PubMed
    Shibuya N, Higuchi A, Hatakeyama N, Yamazaki M, Ito Y, Momose Y (1996) Effects of propofol on contractility and electrophysiological properties of canine single cardiomyocytes. Masui Jpn J Anesthesiol 45(4):408–414
    Smith BS, Yogaratnam D, Levasseur-Franklin KE, Forni A, Fong J (2012) Introduction to drug pharmacokinetics in the critically ill patient. Chest 141(5):1327–1336CrossRef PubMed
    Sossalla S, Wagner S, Rasenack EC, Ruff H, Weber SL, Schondube FA, Tirilomis T, Tenderich G, Hasenfuss G, Belardinelli L, Maier LS (2008) Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts–role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol 45(1):32–43CrossRef PubMed
    Stoetzer C, Kistner K, Stuber T, Wirths M, Schulze V, Doll T, Foadi N, Wegner F, Ahrens J, Leffler A (2015) Methadone is a local anaesthetic-like inhibitor of neuronal Na + channels and blocks excitability of mouse peripheral nerves. Br J Anaesth 114(1):110–120CrossRef PubMed
    Szumita PM, Baroletti SA, Anger KE, Wechsler ME (2007) Sedation and analgesia in the intensive care unit: evaluating the role of dexmedetomidine. Am J Health-Syst Pharm: AJHP: Off J Am Soc Health-Syst Pharm 64(1):37–44CrossRef
    Talke P, Li J, Jain U, Leung J, Drasner K, Hollenberg M, Mangano DT (1995) Effects of perioperative dexmedetomidine infusion in patients undergoing vascular surgery. The study of perioperative ischemia research group. Anesthesiology 82(3):620–633CrossRef PubMed
    Tani M, Neely JR (1990) Na + accumulation increases Ca2+ overload and impairs function in anoxic rat heart. J Mol Cell Cardiol 22(1):57–72CrossRef PubMed
    Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, Kamp TJ, Makielski JC (2005) Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 38(3):475–483CrossRef PubMed
    Valitalo PA, Ahtola-Satila T, Wighton A, Sarapohja T, Pohjanjousi P, Garratt C (2013) Population pharmacokinetics of dexmedetomidine in critically ill patients. Clin Drug Investig 33(8):579–587PubMedCentral CrossRef PubMed
    Venn RM, Karol MD, Grounds RM (2002) Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive caret. Br J Anaesth 88(5):669–675CrossRef PubMed
  • 作者单位:Carsten Stoetzer (1)
    Svenja Reuter (1)
    Thorben Doll (1)
    Nilufar Foadi (1)
    Florian Wegner (2)
    Andreas Leffler (1)

    1. Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
    2. Department of Neurology, Hannover Medical School, Hannover, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Neurosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1912
文摘
Propofol and dexmedetomidine are very commonly used sedative agents. However, several case reports demonstrated cardiovascular adverse effects of these two sedatives. Both substances were previously demonstrated to quite potently inhibit neuronal voltage-gated Na+ channels. Thus, a possible molecular mechanism for some of their cardiac side effects is an inhibition of cardiac voltage gated Na+ channels. In this study, we therefore explored the effects of propofol and dexmedetomidine on the cardiac predominant Na+ channel α-subunit Nav1.5. Effects of propofol and dexmedetomidine were investigated on constructs of the human α-subunit Nav1.5 stably expressed in HEK-293 cells by means of whole-cell patch clamp recordings. Both agents induced a concentration-dependent tonic inhibition of Nav1.5. The calculated IC50 value for propofol was 228 ± 10 μM, and for dexmedetomidine 170 ± 20 μM. Tonic block only marginally increased on inactivated channels, and a weak use-dependent block at 10 Hz was observed for dexmedetomidine (16 ± 2 % by 100 μM). The voltage dependencies of fast and slow inactivation as well as the time course of recovery from inactivation were shifted by both propofol and dexmedetomidine. Propofol (IC50 126 ± 47 μM) and dexmedetomidine (IC50 182 ± 27 μM) blocked the persistent sodium current induced by veratradine. Finally, the local-anesthetic (LA)-insensitive mutant Nav1.5-F1760A exhibited reduced tonic and use-dependent block by both substances. Dexmedetomidine was generally more potent as compared to propofol. Propofol and dexmedetomidine seem to interact with the LA-binding site to inhibit the cardiac Na+ channel Nav1.5 in a state-dependent manner. These data suggest that Nav1.5 is a hitherto unrecognized molecular component of some cardiovascular side effects of these sedative agents. Keywords Propofol Dexmedetomidine Patch-clamp Cardiac sodium channel Nav1.5 Electrophysiology

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700