Calmodulin kinase II inhibitor regulates calcium homeostasis changes caused by acute β-adrenergic receptor agonist stimulation in mouse ventricular myocytes
详细信息    查看全文
  • 作者:Yan Huang ; Tao Liu ; Dandan Wang ; Xin Wang…
  • 关键词:Isoproterenol ; Calmodulin kinase II inhibitor ; IL ; Ca ; Kinetics of L ; type calcium channels ; Ca2+ transient
  • 刊名:In Vitro Cellular & Developmental Biology - Animal
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:52
  • 期:2
  • 页码:156-162
  • 全文大小:1,075 KB
  • 参考文献:Ai X, Curran JW, Shannon TR et al (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97(12):1314–1322CrossRef PubMed
    Barajas-Martínez H, Hu D, Goodrow RJ Jr et al (2013) Electrophysiologic characteristics and pharmacologic response of human cardiomyocytes isolated from a patient with hypertrophic cardiomyopathy. Pacing Clin Electrophysiol 36(12):1512–1515CrossRef PubMed
    Bers DM (2002) Cardiac excitation-contracting coupling. Nature 415(6868):198–205CrossRef PubMed
    Bers DM (2007) Going to cAMP just got more complicated. J Physiol 583(Pt 2):415–416PubMedCentral CrossRef PubMed
    Betzenhauser MJ, Pitt GS, Antzelevitch C (2015) Calcium channel mutations in cardiac arrhythmia syndromes. Curr Mol Pharmacol 8(2):133–142CrossRef PubMed
    Bourgonje VJ, Schoenmakers M, Beekman JD et al (2012) Relevance of calmodulin/CaMKII activation for arrhythmogenesis in the AV block dog. Heart Rhythm 9(11):1875–1883CrossRef PubMed
    Dzhura I, Wu Y, Colbran RJ et al (2000) Calmodulin kinase determines calcium dependent facilitation of L-type calcium channels. Nat Cell Biol 2(3):173–177CrossRef PubMed
    Erickson JR, Joiner ML, Guan X et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133(3):462–474PubMedCentral CrossRef PubMed
    Fu Y, Westenbroek RE, Scheuer T et al (2014) Basal and β-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700. Proc Natl Acad Sci U S A 111(46):16598–16603PubMedCentral CrossRef PubMed
    González-Melchor L, Villarreal-Molina T, Iturralde-Torres P et al (2014) Sudden cardiac death in individuals with normal hearts: an update. Arch Cardiol Mex 84(4):293–304PubMed
    Hryshko LV, Bers DM (1990) Ca current facilitation during postrest recovery depends on Ca entry. Am J Physiol Heart Circ Physiol 259(3 Pt 2):H951–H961
    Huang D, Li J (2011) The feasibility and limitation of patch-clamp recordings from neonatal rat cardiac ventricular slices. In Vitro Cell Dev Biol Anim 47(4):269–272CrossRef PubMed
    Jesty SA, Jung SW, Cordeiro JM et al (2013) Cardiomyocyte calcium cycling in a naturally occurring German shepherd dog model of inherited ventricular arrhythmia and sudden cardiac death. J Vet Cardiol 15(1):5–14CrossRef PubMed
    Knollmann BC, Chopra N, Hlaing T et al (2006) Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J Clin Invest 116(9):2510–2520PubMedCentral PubMed
    Li L, Satoh H, Ginsburg KS et al (1997) The effect of Ca(2+)-calmodulin-dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. J Physiol 501(Pt 1):17–31PubMedCentral CrossRef PubMed
    Ling H, Zhang T, Pereira L et al (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119(5):1230–1240PubMedCentral CrossRef PubMed
    Liu N, Denegri M, Dun W et al (2013) Abnormal propagation of calcium waves and ultrastructural remodeling in recessive catecholaminergic polymorphic ventricular tachycardia. Circ Res 113(2):142–152CrossRef PubMed
    Liu N, Ruan Y, Denegri M et al (2011) Calmodulin kinase II inhibition prevents arrhythmias in RyR2R4496C+/− mice with catecholaminergic polymorphic ventricular tachycardia. J Mol Cell Cardiol 50(1):214–222CrossRef PubMed
    Liu J, Rumsey JW, Das M et al (2008) Electrophysiological and immunocytochemical characterization of DRG neurons on an organosilane surface in serum-free medium. In Vitro Cell Dev Biol Anim 44(5-6):162–168CrossRef PubMed
    Lo LW, Chen YC, Chen YJ et al (2007) Calmodulin kinase II inhibition prevents arrhythmic activity induced by alpha and beta adrenergic agonists in rabbit pulmonary veins. Eur J Pharmacol 571(2-3):197–208CrossRef PubMed
    Lygren B, Taskén K (2006) Compartmentalized cAMP signalling is important in the regulation of Ca(2+) cycling in the heart. Biochem Soc Trans 34(Pt 4):489–491CrossRef PubMed
    Maier LS, Zhang T, Chen L et al (2003) Transgenic CaMKII{delta}C overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92(8):904–911CrossRef PubMed
    Mangmool S, Shukla AK, Rockman HA (2010) beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation. J Cell Biol 189(3):573–587PubMedCentral CrossRef PubMed
    McDonald TF, Pelzer S, Trautwein W et al (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74(2):365–507PubMed
    Pereira L, Métrich M, Fernández-Velasco M et al (2007) The cAMP binding protein epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signaling pathway in rat cardiac myocytes. J Physiol 583(Pt 2):685–694PubMedCentral CrossRef PubMed
    Pitt GS, Zühlke RD, Hudmon A et al (2001) Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J Biol Chem 276(33):30794–30802CrossRef PubMed
    Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301(5901):569–574CrossRef PubMed
    Soltis AR, Saucerman JJ (2010) Synergy between CaMKII substrates and β-adrenergic signaling in regulation of cardiac myocyte Ca2+ handling. Biophys J 99(7):2038–2047PubMedCentral CrossRef PubMed
    Timofeyev V, Myers RE, Kim HJ et al (2013) Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res 112(12):1567–1576PubMedCentral CrossRef PubMed
    Toraason M, Richards DE, Mathias PI (1998) Ca2+ mobilization in fetal-human cardiac myocytes is stimulated by isoproterenol and inhibited by ryanodine. In Vitro Cell Dev Biol Anim 34(1):19–21CrossRef PubMed
    Wang W, Zhu W, Wang S et al (2004) Sustained β1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res 95(8):798–806CrossRef PubMed
    Yamaguchi N, Meissner G (2007) Does Ca2+/calmodulin-dependent protein kinase deltac activate or inhibit the cardiac ryanodine receptor ion channel? Circ Res 100(3):293–295CrossRef PubMed
  • 作者单位:Yan Huang (1)
    Tao Liu (1)
    Dandan Wang (1)
    Xin Wang (1)
    Ran Li (1)
    Yuting Chen (1)
    Yanhong Tang (1)
    Teng Wang (1)
    Congxin Huang (1)

    1. Department of Cardiology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, Hubei, 430060, People’s Republic of China
  • 刊物主题:Cell Biology; Developmental Biology; Stem Cells; Cell Culture; Animal Genetics and Genomics;
  • 出版者:Springer US
  • ISSN:1543-706X
文摘
Ca2+/calmodulin-dependent kinase II (CaMKII) is an important regulatory molecule under chronic β-adrenergic receptor agonist stimulation but cardiac diseases also occur when β-adrenergic elevated acutely in the circulation, of which the most harmful is lethal arrhythmia. The purpose of this study was to explore the effects of acute isoproterenol (ISO) stimulation on intracellular calcium handling and evaluate whether CaMKII inhibitor may change the effects caused by isoproterenol. Mouse ventricular myocytes were acutely isolated by enzymatic method and divided into four groups: control group, ISO group, KN-93 group, ISO + KN-93 group. The whole-cell patch clamp was used to study the effect of ISO and KN-93 on L-type calcium current (IL-Ca) in isolated ventricular myocytes. The technology of laser scanning confocal microscopy was used to record cardiomyocyte calcium transients after ISO and KN-93 were used. ISO significantly increased current density of IL-Ca (p < 0.01) and decreased the half activation voltage (p < 0.01), half inactivation voltage (p < 0.01), and the recovery time constant (p < 0.01). In the presence of CaMKII inhibitor, KN-93 decreased the increased current density of IL-Ca (p < 0.05), increased the reduced half activation voltage caused by ISO (p < 0.01), and prolonged the shortened recovery time constant caused by ISO (p < 0.01). In addition, KN-93 alone can change the activation, inactivation, and recovery kinetics of L-type calcium channels. Moreover, ISO significantly increased the Ca2+ transient amplitude during both stimulation frequencies (0.5 Hz: p < 0.01, 1 Hz: p < 0.01) and was easy to induce calcium disorders; in the presence of KN-93, these changes were weakened (0.5 Hz: p < 0.05, 1 Hz: p < 0.05). Therefore, changes of the calcium homeostasis in cardiomyocytes caused by ISO can be adjusted by KN-93, thus KN-93 plays a vital role in regulating calcium homeostasis changes caused by ISO. Keywords Isoproterenol Calmodulin kinase II inhibitor IL-Ca Kinetics of L-type calcium channels Ca2+ transient

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700