Numerical study of high-pressure GO2/GH2 combustion of a single-element injector
详细信息    查看全文
  • 作者:XiaoWei Wang (1) wangxwbuaa@163.com
    GuoBiao Cai (1)
    HongFa Huo (2)
  • 关键词:Large ; Eddy Simulation – ; Reynolds Averaged Navier ; Stokes equations – ; turbulent combustion – ; rocket – ; numerical simulation
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:55
  • 期:10
  • 页码:2757-2768
  • 全文大小:1.4 MB
  • 参考文献:1. Meyer L, Nichols J, Jones J M. Integrated powerhead demonstrator (booster hydrogen oxygen rocket engines). AIAA Paper 1996-4264, 1996
    2. Davis J A, Campbell R L. Advantages of a full-flow staged combustion cycle engine system. AIAA Paper 1997-3318, 1997
    3. Schley C A, Hagemann G, Tucker P K. Comparison of calculation codes for modeling hydrogen-oxygen injectors. AIAA Paper 1997-3302, 1997
    4. Tucker P K, Klemt M D, Smith T D. Design of efficient gO2/gH2 injector, a NASA, industry and university cooperative effort. AIAA Paper 1997-3350, 1997
    5. Farhangi S, Yu T, Rojas L, et al. Gas-gas injector technology for full flow stage combustion cycle application. AIAA Paper 1999-2757, 1999
    6. Moser M D, Merenich J J, Pal S, et al. OH-radical imaging and velocity field measurements in a gaseous hydrogen/oxygen rocket. AIAA Paper 1993-2036, 1993
    7. Smith T, D, Klem M D, Breisacher K J. Experimental evaluation of a subscale gaseous hydrogen/gaseous oxygen coaxial rocket injector. NASA TM-2002-211982, Glenn Research Center, Cleveland, Ohio, 2002
    8. Wang X, Cai G, Jin P. Scaling of the flowfield in a combustion chamber with a gas-gas injector. Chinese Phys B, 2010, 19(1): 019401
    9. Cai G, Wang X, Jin P, et al. Experimental and numerical investigation of large mass flow rate gas-gas injectors. AIAA Paper 2008-4562, 2008
    10. Wang X, Cai G, Gao Y, et al. Large flow rate shear-coaxial gas-gas injector. AIAA Paper 2009-5042, 2009
    11. Foust M J, Deshpande M, Pal S, et al. Experimental and analytical characterization of a shear coaxial combusting gO2/gH2 flowfield. AIAA Paper 1996-0646, 1996
    12. Archambault M R, Talley D, Peroomian O. Computational analysis of a single-element shear-coaxial GH2/GO2 engine. AIAA Paper 2002-1088, 2002
    13. Archambault M R, Peroomian O. Three-dimensional simulations of a gas/gas, hydrogen/oxygen engine. AIAA Paper 2003-314, 2003
    14. Habiballah M, Orain M, Grisch F, et al. Experimental studies of high-pressure cryogenic flames on the mascotte facility. Combust Sci Technol, 2006, 178: 101–128
    15. Cheng G C, Farmer R. Real fluid modeling of multiphase flows in liquid rocket engine combustors. J Propul Power, 2006, 6: 1373–1381
    16. Smith J J, Schneider G, Suslov D, et al. Steady-state high pressure LOX-H2 rocket engine combustion. Aero Sci Technol, 2007, 11: 39–47
    17. Matsuyama S, Shinjo J, Mizobuchi Y, et al. A numerical investigation on shear coaxial LOX-GH2 jet flame at supercritical pressure. AIAA Paper 2006-761, 2006
    18. Knab O, Preclik D. Test case RCM-3: EADS-ST subscale chamber. 3rd International Workshop Rocket Combustion Modeling, Vernon, France, SNECMA, Villaroche, March, 2006
    19. Masquelet M, Menon S, Jin Y, et al. Simulation of unsteady combustion in a LOX-GH2 fueled rocket engine. Aero Sci Technol, 2009, 8: 466–474
    20. Yang V, Anderson W E. Liquid rocket engine combustion instability. AIAA Progr Astronaut Aeronaut, 1995, 169
    21. Yang V, Habiballah M, Hulka J, et al. Liquid rocket thrust chambers: Aspects of modeling, analysis, and design. AIAA Progr Astronaut Aeronaut, 2004, 200
    22. Bazarov G, Yang V. Liquid-propellant rocket engine injector dynamics. J Propul Power, 1998, 14: 797–806
    23. Oefelein C, Yang V. Comprehensive review of liquid-propellant combustion instabilities in F-1 engines. J Propul Power, 1993, 9: 657–677
    24. Culick F, Yang V. Overview of combustion instabilities in liquid-propellant rocket engines, liquid rocket engine combustion instability. AIAA Progr Astronaut Aeronaut, 1995, 169: 3–37
    25. Yang V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems. P Combust Inst, 2000, 28: 925–942
    26. Lin J, West J S, Williamst R W. CFD code validation of wall heat fluxes for a gO2/gH2 single element combustor. AIAA Paper 2005-4524, 2005
    27. Marshall W M, Pal S, Woodward R D. Benchmark wall heat flux data for a gO2/gH2 single element combustor. AIAA Paper 2005-3572, 2005
    28. Conley A, Vaidyanathan A, Segal C. Heat flux measurements for a gO2/gH2 single-element, shear injector. J Spacecr Roc, 2007, 3: 33–639
    29. Tucker P K, Menon S, Merkle C L, et al. An approach to improved credibility of CFD simulations for rocket injector design. AIAA Paper 2007-5572, 2007
    30. Tucker P K, Menon S, Merkle C L, et al. Validation of high-fidelity CFD simulations for rocket injector design. AIAA Paper 2008-5226, 2008
    31. Calhoon D, Ito J, Kors D. Investigation of gaseous propellant combustion and associated injector-chamber design guidelines. NAS 3-13379, Sacramento: Aerojet Liquid Rocket Company, 1973
    32. Groot W A, McGuire T J, Schneider S J. Qualitative flow visualization of a 110N hydrogen/oxygen laboratory model thruster. AIAA Paper 1997-2847, 1997
    33. Fung Y T, Yang V, Sinha A. Active control of combustion instabilities with distributed actuators. Combust Sci Technol, 1991, 78: 217–245
    34. Fung Y T, Yang V. Active control of nonlinear pressure oscillations in combustion chambers. J Propul Power, 1992, 8: 1282–1289
    35. O’Connaire M, Curran H J, Simmie J M, et al. A comprehensive modeling study of hydrogen oxidation. Int J Chem Kinet, 2004, 36: 603–622
    36. Hsieh Y, Yang V. A preconditioned flux-differencing scheme for chemically reacting flows at all mach numbers. Int J Comput Fluid Dyn, 1997, 8: 31–49
    37. Meng H, Yang V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme. J Comput Phys, 2003, 189: 277–304
    38. Zong N, Yang V. An efficient preconditioning scheme for real-fluid mixtures using primitive pressure-temperature variables. Int J Comput Fluid Dyn, 2007, 21: 217–230
    39. Hsieh C, Shuen J S, Yang V. Droplet vaporization in high-pressure environments, I: near critical conditions. Combust Sci Technol, 1991, 76: 111–132
    40. Shuen S, Yang V. Combustion of liquid-fuel droplets at supercritical conditions. Combust Flame, 1992, 89: 299–319
    41. Vigor V, Lin N, Shuen J S. Vaporization of liquid oxygen (LOX) droplets in supercritical hydrogen environments. Combust Sci Technol, 1994, 97: 247–270
    42. Hsiao C, Meng H, Yang V. Pressure-coupled vaporization response of n-pentane fuel droplet at subcritical and supercritical conditions. P Combust Inst, 2011, 33: 1997–2003
    43. Meng H, Hsiao C, Yang V, et al. Transport and dynamics of liquid oxygen droplets in supercritical hydrogen streams. J Fluid Mech, 2005, 527: 115–139
    44. Lafon P, Meng H, Yang V. Supercritical vaporization of liquid oxygen (LOX) droplets in hydrogen and water environments. Combust Sci Technol. 2008, 180: 1–26
    45. Oefelein C, Yang V. Modeling high-pressure mixing and combustion processes in liquid rocket engines. J Propul Power, 1998, 14: 843–857
    46. Zong N, Meng H, Hsieh Y. Cryogenic fluid injection and mixing under supercritical conditions. Phys Fluids, 2004, 16: 4248–4261
    47. Zong N, Yang V. Characterization of cryogenic propellant swirl injection at supercritical conditions. AIAA Paper 2004-1332, 2004
    48. Zong N, Yang V. Cryogenic fluid jets and mixing layers in transcritical and supercritical environments. Combust Sci Technol, 2006, 178: 193–227
    49. Wang S, Yang V, Hsiao C C. Large-eddy simulations of gas-turbine swirl injector flow dynamics. J Fluid Mech, 2007, 583: 99–122
    50. Zong N, Yang V. Near-field flow and flame dynamics of LOX/ Methane shear coaxial injector under supercritical conditions. P Combust Inst, 2007, 31: 2309–2317
    51. Zong N, Yang V. Cryogenic fluid dynamics of pressure swirl injectors at supercritical conditions. Phys Fluids, 2008, 20: 056103
    52. DesJardin E, Frankel H. Large eddy simulation of a nonpremixed reacting jet: Application and assessment of subgrid-scale combustion models. Phys Fluids, 1998: 10(9): 2298–2314
    53. Huo H F. Large-eddy simulation of supercritical flwuid flow and comubustion. Doctoral Dissertation. Pennsylvania: Pennsylvania State University, 2011
    54. Girimaji S S, Zhou Y. Analysis and modeling of subgrid scalar mixing using numerical data. Phys Fluids, 1996, 5: 1224–1236
    55. Ribert G, Zong N, Yang V, et al. Counterflow diffusion flames of general fluids: oxygen/hydrogen mixtures. Combust Flame, 2008, 154: 319–330
    56. Pons L, Darabiha N, Candel S, et al. Mass transfer and combustion in transcritical non-premixed vounterflows. Combust Theor Model, 2009, 13: 57–81
    57. Schlichting H. Boundary-Layer Theory, 6th ed. New York: McGraw-Hill. 1968
    58. Peters N. Turbulent Combustion. Cambridge: Cambridge University Press, 2000
  • 作者单位:1. School of Astronautics, Beihang University, Beijing, 100191 China2. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, 30332 USA
  • ISSN:1869-1900
文摘
A single-element shear-coaxial combustor using gaseous hydrogen (GH2) and oxygen (GO2) was designed and hot-tested. The wall temperature was measured. The combustion flow-field of this GH2/GO2 single-element combustor was modeled by RANS (Reynolds Averaged Navier-Stokes) and LES (Large Eddy Simulation) methods respectively. The impact of using various turbulence and turbulent combustion models was investigated to obtain the model combination which best represented the experimental data in the RANS modeling. The flamelet model was used in the LES modeling and the validity of its application to the GH2/GO2 combustion in the combustor was carefully examined. The combustor wall heat flux distributions of both RANS and LES results show good agreement with the experimental data. The experimental wall temperature distribution can be clearly explained through analyzing the inner flowfield structure. The results indicate that both RANS and LES used in this paper can give good predictions of the development of the whole flowfield and the combustion completion length. LES can resolve large-scale flow motions in the combustor and accurately predict the influence of the wall heat loss on the combustion efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700