Mode and tempo of sequence and floral evolution within the Anserineae
详细信息    查看全文
  • 作者:James A. Naeger ; Edward M. Golenberg
  • 关键词:Anserineae ; Blitum ; Chenopodiaceae ; Dioecy ; Floral development ; Floral organ identity genes ; Insertion/deletion sequence evolution ; Spinacia
  • 刊名:Plant Systematics and Evolution
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:302
  • 期:4
  • 页码:385-398
  • 全文大小:1,091 KB
  • 参考文献:Albert VA, Williams SE, Chase MW (1992) Carnivorous plants—phylogeny and structural evolution. Science 257:1491–1495CrossRef PubMed
    Avise JC, Nelson WS, Sugita H (1994) A speciational history of “living fossils”: molecular evolutionary patterns in horseshoe crabs. Evolution 48:1986–2001CrossRef
    Borsch T, Quandt D (2009) Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA. Pl Syst Evol 282:169–199CrossRef
    Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Pl Cell 1:37–52CrossRef
    Canning P, Cooper CDO, Krojer T, Murray JW, Pike ACW, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Marsden BD, Gileadi O, Knapp S, von Delft F, Bullock AN (2013) Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem 288:7803–7814CrossRef PubMed PubMedCentral
    Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim KJ, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang QY, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants—an analysis of nucleotide-sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528–580CrossRef
    Craig KL, Tyers M (1999) The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Progr Biophys Molec Biol 72:299–328CrossRef
    Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–160CrossRef PubMed
    Diggle PK, Di Stilio VS, Gschwend AR, Golenberg EM, Moore RC, Russell JRW, Sinclair JP (2011) Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet 27:368–376CrossRef PubMed
    Doebley J, Durbin M, Golenberg EM, Clegg MT, Ma DP (1990) Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide-sequence among the grasses (Gramineae). Evolution 44:1097–1108CrossRef
    Easteal S, Collet C (1994) Consistent variation in amino-acid substitution rate, despite uniformity of mutation rate: protein evolution in mammals is not neutral. Molec Biol Evol 11:643–647PubMed
    Elmer KR, Lehtonen TK, Kautt AF, Harrod C, Meyer A (2010) Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biol 8:60CrossRef PubMed PubMedCentral
    Fuentes-Bazan S, Mansion G, Borsch T (2012a) Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Molec Phylogen Evol 62:359–374CrossRef
    Fuentes-Bazan S, Uotila P, Borsch T (2012b) A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Wildenowia 42:5–24CrossRef
    Gadagkar SR, Rosenberg MS, Kumar S (2005) Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool Part B 304B:64–74CrossRef
    Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven
    Golenberg EM, West NW (2013) Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Amer J Bot 100:1–16CrossRef
    Golenberg EM, Clegg MT, Durbin ML, Doebley J, Ma DP (1993) Evolution of a noncoding region of the chloroplast genome. Molec Phylogen Evol 2:52–64CrossRef
    Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRef PubMed
    Hallavant C, Ruas M-P (2014) The first archaeobotanical evidence of Spinacia oleracea L. (spinach) in late 12th–mid 13th century a.d, France. Veget Hist Archaeobot 23:153–165CrossRef
    Hepworth S, Klenz J, Haughn G (2006) UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta 223:769–778CrossRef PubMed
    Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucl Acids Res 27:297–300CrossRef PubMed PubMedCentral
    Hilu KW, Liang HP (1997) The matK gene: sequence variation and application in plant systematics. Amer J Bot 84:830–839CrossRef
    Hilu KW, Borsch T, Muller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW (2003) Angiosperm phylogeny based on matK sequence information. Amer J Bot 90:1758–1776CrossRef
    Janick J, Stevenson EC (1955) Genetics of the monoecious character in spinach. Genetics 40:429–437PubMed PubMedCentral
    Johnson LA, Soltis DE (1994) matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot 19:143–156CrossRef
    Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of [C.sub.4] photosynthesis. Int J Pl Sci 164:959–986CrossRef
    Kadereit G, Mavrodiev EV, Zacharias EH, Sukhorukov AP (2010) Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Amer J Bot 97:1664–1687CrossRef
    Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298CrossRef PubMed
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRef PubMed PubMedCentral
    Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371CrossRef PubMed
    Kempin SA, Mandel MA, Yanofsky MF (1993) Conversion of perianth into reproductive-organs by ectopic expression of the tobacco floral homeotic gene NAG1. Pl Physiol 103:1041–1046CrossRef
    Kramer EM, Irish VF (2000) Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int J Pl Sci 161:29–40CrossRef
    Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783PubMed PubMedCentral
    Laufer B (1919) Sino-Iranica: Chinese contributions to the history of civilization in ancient Iran, with special reference to the history of cultivated plants and products. Field Museum of Natural History, Chicago
    Levin JZ, Meyerowitz EM (1995) UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Pl Cell 7:529–548CrossRef
    Mahoney DL, Janick J, Stevenson EC (1959) Sex determination in diploid-triploid crosses of Spinacia oleracea. Amer J Bot 46:372–375CrossRef
    Mandel MA, Bowman JL, Kempin SA, Ma H, Meyerowitz EM, Yanofsky MF (1992) Manipulation of flower structure in transgenic tobacco. Cell 71:133–143CrossRef PubMed
    Martin W, Lydiate D, Brinkmann H, Forkmann G, Saedler H, Cerff R (1993) Molecular phylogenies in angiosperm evolution. Molec Biol Evol 10:140–162PubMed
    Müller K, Borsch T (2005) Phylogenetics of Amaranthaceae based on matK/trnK sequence data: evidence from parsimony, likelihood, and bayesian analyses. Ann Missouri Bot Gard 92:66–102
    Ng M, Yanofsky MF (2001) Activation of the arabidopsis B class homeotic genes by APETALA1. Pl Cell 13:739–753CrossRef
    Ni W, Xie D, Hobbie L, Feng B, Zhao D, Akkara J, Ma H (2004) Regulation of flower development in Arabidopsis by SCF complexes. Pl Physiol 134:1574–1585CrossRef
    Nohara S (1922–1923) Genetic studies on spinach. Jap J Bot 1:111–120
    Onodera Y, Yonaha I, Masumo H, Tanaka A, Niikura S, Yamazaki S, Mikami T (2011) Mapping of the genes for dioecism and monoecism in Spinacia oleracea L.: evidence that both genes are closely linked. Pl Cell Rep 30:965–1036CrossRef
    Pfent C, Pobursky KJ, Sather DN, Golenberg EM (2005) Characterization of SpAPETALA3 and SpPISTILLATA, B class floral identity genes in Spinacia oleracea, and their relationship to sexual dimorphism. Devel Genes Evol 215:132–142CrossRef
    Pouteau S, Nicholls D, Tooke F, Coen E, Battey N (1998) Transcription pattern of a FIM homologue in Impatiens during floral development and reversion. Pl J 14:235–246CrossRef
    Prohens J, Nuez F, Morelock T, Correll J (2008) Spinach. Vegetables I. Springer, New York, pp 189–218
    Rettig JH, Wilson HD, Manhart JR (1992) Phylogeny of the Caryophyllales—gene sequence data. Taxon 41:201–209CrossRef
    Riechmann JL, Meyerowitz EM (1997) Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Molec Biol Cell 8:1243–1259CrossRef PubMed PubMedCentral
    Saedler H, Huijser P (1993) Molecular-biology of flower development in Antirrhinum-majus (snapdragon). Gene 135:239–243CrossRef PubMed
    Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Pl J 20:433–445CrossRef
    Sather DN, York A, Pobursky KJ, Golenberg EM (2005) Sequence evolution and sex-specific expression patterns of the C class floral identity gene, SpAGAMOUS, in dioecious Spinacia oleracea L. Planta 222:284–292CrossRef PubMed
    Sather DN, Jovanovic M, Golenberg EM (2010) Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism. BMC Pl Biol 10:46CrossRef
    Sherry RA, Eckard KJ, Lord EM (1993) Flower development in dioecious Spinacia oleracea (Chenopodiaceae). Amer J Bot 80:283–291CrossRef
    Simoons FJ (1990) Food in China: a cultural and historical inquiry. CRC Press, Boca Raton
    Sneep J (1982) The domestication of spinach and the breeding history of its varieties. Euphytica S 2:1–27
    Steele KP, Vilgalys R (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst Bot 19:126–142CrossRef
    Sturmbauer C, Meyer A (1992) Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358:578–581CrossRef PubMed
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739CrossRef PubMed PubMedCentral
    van der Vossen HAM (2004) Spinacia oleracea L. In: Grubben GJH, Denton OA (eds) PROTA 2: vegetables/légumes. PROTA, Wageningen
    Vawter L, Brown WM (1986) Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194–196CrossRef PubMed
    Wang X, Feng S, Nakayama N, Crosby WL, Irish V, Deng XW, Wei N (2003) The COP9 Signalosome Interacts with SCFUFO and Participates in Arabidopsis Flower Development. Pl Cell 15:1071–1082CrossRef
    Wilkinson MD, Haughn GW (1995) UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis. Pl Cell 7:1485–1499CrossRef
    Wilson MA, Gaut B, Clegg MT (1990) Chloroplast DNA evolves slowly in the palm family (Arecaceae). Molec Biol Evol 7:303–314PubMed
    Zhao D, Yu Q, Chen M, Ma H (2001) The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis. Development 128:2735–2746PubMed
  • 作者单位:James A. Naeger (1)
    Edward M. Golenberg (1)

    1. Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Ecology
    Plant Anatomy and Development
    Plant Systematics/Taxonomy/ Biogeography
  • 出版者:Springer Wien
  • ISSN:1615-6110
文摘
The Chenopodiaceae Tribe Anserineae Dumort was proposed to include the genus Spinacia and the genus Blitum. In addition to the recent domestication of Spinacia, the tribe demonstrates extensive evolution within its floral development. We test whether the development of dioecy, monoecy, and protogyny is reflected differentially among floral developmental versus non-floral developmental genes, and whether recent domestication leaves traces in the phylogenetic relationship within the genus Spinacia. The phylogenetic predictions consistently support the sister relationship of Spinacia sp. to a Blitum clade consisting of Blitum bonus-henricus, Blitum virgatum, and Blitum nuttallianum. Relative rates tests indicate a generally faster rate of nucleotide substitutions within Spinacia. Tests of selection indicate that there is generally purifying selection acting on the sequences. In addition, insertion/deletion (indel) events occur more prominently within the Spinacia clade and occur in both coding and intron regions. The phylogenetic relationships within this tribe calls into question the hypothesis that dioecy in Spinacia evolved from a monoecious grade. The evidence for purifying selection in Spinacia suggests that the increased nucleotide substitution rates are not driving protein evolution, in contrast to evidence of protein sequence and structure evolution driven by indels. There is no footprint of domestication on sequence evolution, and we cannot detect phylogenetic signals that would support separation of the Spinacia accessions into three distinct taxa.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700