Phase Fourier Reconstruction for Anomaly Detection on Metal Surface Using Salient Irregularity
详细信息    查看全文
文摘
In this paper, we propose a Phase Fourier Reconstruction (PFR) approach for anomaly detection on metal surfaces using salient irregularities. To get salient irregularity with images captured from an automatic visual inspection (AVI) system using different lighting settings, we first trained a classifier for image selection as only dark images are utilized for anomaly detection. By doing so, surface details, part design, and boundaries between foreground/background become indistinct, but anomaly regions are highlighted because of diffuse reflection caused by rough surfaces. Then PFR is applied so that regular patterns and homogeneous regions are further de-emphasized, and simultaneously, anomaly areas are distinct and located. Different from existing phase-based methods which require substantial texture information, our PFR works on both textual and non-textual images. Unlike existing template matching methods which require prior knowledge of defect-free patterns, our PFR is an unsupervised approach which detects anomalies using a single image. Experimental results on anomaly detection clearly demonstrate the effectiveness of the proposed method which outperforms several well-designed methods [8, 12, 15, 16, 18, 19] with a running time of less than 0.01 seconds per image.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700