Mutation-introduced dimerization of receptor tyrosine kinases: from protein structure aberrations to carcinogenesis
详细信息    查看全文
  • 作者:Huimin Hu (1) (2)
    Yanwei Liu (1) (2)
    Tao Jiang (1) (2) (3) (4)

    1. Department of Molecular Neuropathology
    ; Beijing Neurosurgical Institute ; Capital Medical University ; No. 6 Tiantan Xili ; Dongcheng ; Beijing ; 100050 ; People鈥檚 Republic of China
    2. Chinese Glioma Cooperative Group (CGCG)
    ; 6 Tiantanxi Li ; Beijing ; 100050 ; China
    3. Department of Neurosurgery
    ; Beijing Tiantan Hospital ; Capital Medical University ; No. 6 Tiantan Xili ; Dongcheng ; Beijing ; 100050 ; People鈥檚 Republic of China
    4. Beijing Institute for Brain Disorders Brain Tumor Center
    ; Beijing ; China
  • 关键词:Receptor tyrosine kinases ; Mutation ; Dimerization ; Oncogenicity ; Gene rearrangement ; Protein structure alteration ; Oncogenesis
  • 刊名:Tumor Biology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:36
  • 期:3
  • 页码:1423-1428
  • 全文大小:318 KB
  • 参考文献:1. Dent, P (2014) Met in lung cancer. Cancer Biol Ther 15: pp. 653-4 CrossRef
    2. Schlessinger, J, Ullrich, A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9: pp. 383-91 CrossRef
    3. Assoian, RK, Schwartz, MA (2001) Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr Opin Genet Dev 11: pp. 48-53 CrossRef
    4. Hieronymus T, Zenke M, Baek JH, et al. The clash of Langerhans cell homeostasis in skin: Should I stay or should I go? Semin Cell Dev Biol. 2014. doi:10.1016/j.semcdb.2014.02.009
    5. Fogh, BS, Multhaupt, HA, Couchman, JR (2014) Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 62: pp. 172-84 CrossRef
    6. Witsch, E, Sela, M, Yarden, Y (2010) Roles for growth factors in cancer progression. Physiology (Bethesda) 25: pp. 85-101 CrossRef
    7. Yarden, Y, Ullrich, A (1988) Growth factor receptor tyrosine kinases. Annu Rev Biochem 57: pp. 443-78 CrossRef
    8. Ullrich, A, Schlessinger, J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: pp. 203-12 CrossRef
    9. Maleszka, R, Mason, PH, Barron, AB (2014) Epigenomics and the concept of degeneracy in biological systems. Brief Funct Genomics 13: pp. 191-202 CrossRef
    10. Hanks, SK, Quinn, AM, Hunter, T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: pp. 42-52 CrossRef
    11. Locascio, LE, Donoghue, DJ (2013) KIDs rule: regulatory phosphorylation of RTKs. Trends Biochem Sci 38: pp. 75-84 CrossRef
    12. Yamanashi, Y, Tezuka, T, Yokoyama, K (2012) Activation of receptor protein-tyrosine kinases from the cytoplasmic compartment. J Biochem 151: pp. 353-9 CrossRef
    13. Schlessinger, J (2000) Cell signaling by receptor tyrosine kinases. Cell 103: pp. 211-25 CrossRef
    14. Wong, AJ (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci U S A 84: pp. 6899-903 CrossRef
    15. Jeuken, J (2009) Robust detection of EGFR copy number changes and EGFR variant III: technical aspects and relevance for glioma diagnostics. Brain Pathol 19: pp. 661-71 CrossRef
    16. Choura, M, Rebai, A (2011) Receptor tyrosine kinases: from biology to pathology. J Recept Signal Transduct Res 31: pp. 387-94 CrossRef
    17. Park, M (1986) Mechanism of met oncogene activation. Cell 45: pp. 895-904 CrossRef
    18. Amicone, L (1997) Transgenic expression in the liver of truncated Met blocks apoptosis and permits immortalization of hepatocytes. EMBO J 16: pp. 495-503 CrossRef
    19. Liang, TJ (1996) Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J Clin Invest 97: pp. 2872-7 CrossRef
    20. Rodrigues, GA, Park, M (1993) Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol 13: pp. 6711-22
    21. Danilkovitch-Miagkova, A, Zbar, B (2002) Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest 109: pp. 863-7 CrossRef
    22. Garrett, TP (2002) Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110: pp. 763-73 CrossRef
    23. Cohen-Katsenelson, K (2013) Identification and analysis of a novel dimerization domain shared by various members of c-Jun N-terminal kinase (JNK) scaffold proteins. J Biol Chem 288: pp. 7294-304 CrossRef
    24. Cappellen, D (1999) Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 23: pp. 18-20 CrossRef
    25. Naski, MC (1996) Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 13: pp. 233-7 CrossRef
    26. Kannan, K, Givol, D (2000) FGF receptor mutations: dimerization syndromes, cell growth suppression, and animal models. IUBMB Life 49: pp. 197-205 CrossRef
    27. Liao, RG (2013) Inhibitor-sensitive FGFR2 and FGFR3 mutations in lung squamous cell carcinoma. Cancer Res 73: pp. 5195-205 CrossRef
    28. Roskoski, RJ (2013) Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res 68: pp. 68-94 CrossRef
    29. Stoica, GE (2002) Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 277: pp. 35990-8 CrossRef
    30. Stoica, GE (2001) Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem 276: pp. 16772-9 CrossRef
    31. Shackelford, RE (2014) ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer 5: pp. 1-14
    32. Takeuchi, K (2008) Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res 14: pp. 6618-24 CrossRef
    33. Lu, X, Gross, AW, Lodish, HF (2006) Active conformation of the erythropoietin receptor: random and cysteine-scanning mutagenesis of the extracellular juxtamembrane and transmembrane domains. J Biol Chem 281: pp. 7002-11 CrossRef
    34. Kjaer, S (2006) Self-association of the transmembrane domain of RET underlies oncogenic activation by MEN2A mutations. Oncogene 25: pp. 7086-95 CrossRef
    35. Tong, Q, Xing, S, Jhiang, SM (1997) Leucine zipper-mediated dimerization is essential for the PTC1 oncogenic activity. J Biol Chem 272: pp. 9043-7 CrossRef
    36. Armon, A, Graur, D, Ben-Tal, N (2001) ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J Mol Biol 307: pp. 447-63 CrossRef
    37. Glaser, F (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19: pp. 163-4 formatics/19.1.163" target="_blank" title="It opens in new window">CrossRef
    38. Hu, J (2011) Differential roles of cysteine residues in the cellular trafficking, dimerization, and function of the high-density lipoprotein receptor. SR-BI. Biochemistry 50: pp. 10860-75 CrossRef
    39. Kong-Beltran, M, Stamos, J, Wickramasinghe, D (2004) The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell 6: pp. 75-84 CrossRef
    40. Zenatti, PP (2011) Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 43: pp. 932-9 CrossRef
  • 刊物主题:Cancer Research;
  • 出版者:Springer Netherlands
  • ISSN:1423-0380
文摘
Cancer is the greatest challenge to human health in our era. Perturbations of receptor tyrosine kinase (RTK) function contribute to a large chunk of cancer etiology. Current evidence supports that mutations in RTKs mediate receptor dimerization and result in ligand-independent kinase activity and tumorigenesis, indicating that mutation-introduced receptor dimerization is a critical component of oncogenesis RTK mutations. However, there are no specialized reviews of this important principle. In the current review, we discuss the physiological and harmless RTK function and subsequently examine mutation-introduced dimerization of RTKs and the role of these mutations in tumorigenesis. We also summarize the protein structure characteristics that are important for dimerization and introduce research methods and tools to predict and validate the existence of oncogenic mutations introduced by dimerization in RTKs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700