Linking short tandem repeat polymorphisms with cytosine modifications in human lymphoblastoid cell lines
详细信息    查看全文
  • 作者:Zhou Zhang ; Yinan Zheng ; Xu Zhang ; Cong Liu ; Brian Thomas Joyce…
  • 刊名:Human Genetics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:135
  • 期:2
  • 页码:223-232
  • 全文大小:756 KB
  • 参考文献:Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF et al (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 12:R10. doi:10.​1186/​gb-2011-12-1-r10 PubMed PubMedCentral CrossRef
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple Testing. J Roy Stat Soc B Met 57:289–300. doi:10.​2307/​2346101
    Berto G, Camera P, Fusco C, Imarisio S, Ambrogio C, Chiarle R et al (2007) The Down syndrome critical region protein TTC3 inhibits neuronal differentiation via RhoA and Citron kinase. J Cell Sci 120:1859–1867. doi:10.​1242/​jcs.​000703 PubMed CrossRef
    Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98:288–295. doi:10.​1016/​j.​ygeno.​2011.​07.​007 PubMed CrossRef
    Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193PubMed CrossRef
    Bolton KA, Ross JP, Grice DM, Bowden NA, Holliday EG, Avery-Kiejda KA et al (2013) STaRRRT: a table of short tandem repeats in regulatory regions of the human genome. BMC Genom 14:795. doi:10.​1186/​1471-2164-14-795 CrossRef
    Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, Weigel D et al (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523. doi:10.​1101/​gr.​541303 PubMed PubMedCentral CrossRef
    Brahmachary M, Guilmatre A, Quilez J, Hasson D, Borel C, Warburton P et al (2014) Digital genotyping of macrosatellites and multicopy genes reveals novel biological functions associated with copy number variation of large tandem repeats. PLoS Genet 10:e1004418. doi:10.​1371/​journal.​pgen.​1004418 PubMed PubMedCentral CrossRef
    Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y et al (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712. doi:10.​1038/​nature08516 PubMed PubMedCentral CrossRef
    Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C et al (2011) A copy number variation morbidity map of developmental delay. Nat Genet 43:838–846. doi:10.​1038/​ng.​909 PubMed PubMedCentral CrossRef
    Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L et al (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform 11:587. doi:10.​1186/​1471-2105-11-587 CrossRef
    Duan S, Huang RS, Zhang W, Bleibel WK, Roe CA, Clark TA et al (2008) Genetic architecture of transcript-level variation in humans. Am J Hum Genet 82:1101–1113. doi:10.​1016/​j.​ajhg.​2008.​03.​006 PubMed PubMedCentral CrossRef
    Ellegren H (2000) Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet 24:400–402. doi:10.​1038/​74249 PubMed CrossRef
    Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. doi:10.​1038/​nrg1348 PubMed CrossRef
    Encode Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi:10.​1038/​nature11247 CrossRef
    Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49. doi:10.​1038/​nature09906 PubMed PubMedCentral CrossRef
    Fraser HB, Lam LL, Neumann SM, Kobor MS (2012) Population-specificity of human DNA methylation. Genome Biol 13:R8. doi:10.​1186/​gb-2012-13-2-r8 PubMed PubMedCentral CrossRef
    Gamazon ER, Badner JA, Cheng L, Zhang C, Zhang D, Cox NJ et al (2013) Enrichment of cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants. Mol Psychiatry 18:340–346. doi:10.​1038/​mp.​2011.​174 PubMed PubMedCentral CrossRef
    Hattori E, Ebihara M, Yamada K, Ohba H, Shibuya H, Yoshikawa T (2001) Identification of a compound short tandem repeat stretch in the 5′-upstream region of the cholecystokinin gene, and its association with panic disorder but not with schizophrenia. Mol Psychiatry 6:465–470. doi:10.​1038/​sj.​mp.​4000875 PubMed CrossRef
    Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367. doi:10.​1073/​pnas.​0903103106 PubMed PubMedCentral CrossRef
    Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127. doi:10.​1093/​biostatistics/​kxj037 PubMed CrossRef
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMed PubMedCentral CrossRef
    Kuroda S, Schweighofer N, Kawato M (2001) Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21:5693–5702PubMed
    Li R, Hsieh CL, Young A, Zhang Z, Ren X, Zhao Z (2015) Illumina synthetic long read sequencing allows recovery of missing sequences even in the “finished” C. elegans genome. Sci Rep. 5:10814. doi:10.​1038/​srep10814
    McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A et al (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 40:1166–1174. doi:10.​1038/​ng.​238 PubMed CrossRef
    Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS et al (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16:1182–1190. doi:10.​1101/​gr.​4565806 PubMed PubMedCentral CrossRef
    Moen EL, Zhang X, Mu W, Delaney SM, Wing C, McQuade J et al (2013) Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits. Genetics 194:987–996. doi:10.​1534/​genetics.​113.​151381 PubMed PubMedCentral CrossRef
    Monkley SJ, Pritchard CA, Critchley DR (2001) Analysis of the mammalian talin2 gene TLN2. Biochem Biophys Res Commun 286:880–885. doi:10.​1006/​bbrc.​2001.​5497 PubMed CrossRef
    Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS et al (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430:743–747. doi:10.​1038/​nature02797 PubMed PubMedCentral CrossRef
    Murrell A, Heeson S, Cooper WN, Douglas E, Apostolidou S, Moore GE et al (2004) An association between variants in the IGF2 gene and Beckwith–Wiedemann syndrome: interaction between genotype and epigenotype. Hum Mol Genet 13:247–255. doi:10.​1093/​hmg/​ddh013 PubMed CrossRef
    Pai AA, Bell JT, Marioni JC, Pritchard JK, Gilad Y (2011) A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues. PLoS Genet 7:e1001316. doi:10.​1371/​journal.​pgen.​1001316 PubMed PubMedCentral CrossRef
    Payseur BA, Jing P (2009) A genomewide comparison of population structure at STRPs and nearby SNPs in humans. Mol Biol Evol 26:1369–1377. doi:10.​1093/​molbev/​msp052 PubMed PubMedCentral CrossRef
    Payseur BA, Place M, Weber JL (2008) Linkage disequilibrium between STRPs and SNPs across the human genome. Am J Hum Genet 82:1039–1050. doi:10.​1016/​j.​ajhg.​2008.​02.​018 PubMed PubMedCentral CrossRef
    Payseur BA, Jing P, Haasl RJ (2011) A genomic portrait of human microsatellite variation. Mol Biol Evol 28:303312. doi:10.​1093/​molbev/​msq198 PubMed PubMedCentral CrossRef
    Perry GH (2008) The evolutionary significance of copy number variation in the human genome. Cytogenet Genome Res 123:283–287. doi:10.​1159/​000184719 PubMed CrossRef
    Pumpernik D, Oblak B, Borstnik B (2008) Replication slippage versus point mutation rates in short tandem repeats of the human genome. Mol Genet Genomics 279:53–61. doi:10.​1007/​s00438-007-0294-1 PubMed CrossRef
    Ram D, Leshkowitz D, Gonzalez D, Forer R, Levy I, Chowers M et al (2015) Evaluation of GS Junior and MiSeq next-generation sequencing technologies as an alternative to Trugene population sequencing in the clinical HIV laboratory. J Virol Methods 212:12–16. doi:10.​1016/​j.​jviromet.​2014.​11.​003 PubMed CrossRef
    Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311PubMed PubMedCentral CrossRef
    Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi BZ, Cedar H (1999) DNA methylation represses transcription in vivo. Nat Genet 22:203–206. doi:10.​1038/​9727 PubMed CrossRef
    Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG (2007) Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 39:226–231. doi:10.​1038/​ng1955 PubMed PubMedCentral CrossRef
    St George-Hyslop P, Haines J, Rogaev E, Mortilla M, Vaula G, Pericak-Vance M et al (1992) Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nat Genet 2:330–334. doi:10.​1038/​ng1292-330 PubMed CrossRef
    Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A et al (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495. doi:10.​1038/​nature10716 PubMed
    Stark AL, Hause RJ Jr, Gorsic LK, Antao NN, Wong SS, Chung SH et al (2014) Protein quantitative trait loci identify novel candidates modulating cellular response to chemotherapy. PLoS Genet 10:e1004192. doi:10.​1371/​journal.​pgen.​1004192 PubMed PubMedCentral CrossRef
    Stein JL, Hua X, Morra JH, Lee S, Hibar DP, Ho AJ et al (2010) Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer’s disease. Neuroimage 51:542–554. doi:10.​1016/​j.​neuroimage.​2010.​02.​068 PubMed PubMedCentral CrossRef
    Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N et al (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848–853. doi:10.​1126/​science.​1136678 PubMed PubMedCentral CrossRef
    The International HapMap Consortium (2003) The International HapMap project. Nature 426:789–796. doi:10.​1038/​nature02168 CrossRef
    The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320. doi:10.​1038/​nature04226 PubMedCentral CrossRef
    The International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861. doi:10.​1038/​nature06258 PubMedCentral CrossRef
    The International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. doi:10.​1038/​35057062 CrossRef
    Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128PubMed CrossRef
    Westfall P, Young S (1993) Resampling-based multiple testing: examples and methods for p-value adjustment. Wiley, New York
    Wooster R, Cleton-Jansen AM, Collins N, Mangion J, Cornelis RS, Cooper CS et al (1994) Instability of short tandem repeats (microsatellites) in human cancers. Nat Genet 6:152–156. doi:10.​1038/​ng0294-152 PubMed CrossRef
    Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA et al (2008) Evaluation of genetic variation contributing to differences in gene expression between populations. Am J Hum Genet 82:631–640. doi:10.​1016/​j.​ajhg.​2007.​12.​015 PubMed PubMedCentral CrossRef
    Zhang W, Duan S, Bleibel WK, Wisel SA, Huang RS, Wu X, He L, Clark TA, Chen TX, Schweitzer AC, Blume JE, Dolan ME, Cox NJ (2009) Identification of common genetic variants that account for transcript isoform variation between human populations. Hum Genet 125(1):81–93PubMed PubMedCentral CrossRef
    Zhang DD, Cheng LJ, Badner JA, Chen C, Chen Q, Luo W et al (2010) Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet 86:411–419. doi:10.​1016/​j.​ajhg.​2010.​02.​005 PubMed PubMedCentral CrossRef
    Zhang X, Cal AJ, Borevitz JO (2011) Genetic architecture of regulatory variation in Arabidopsis thaliana. Genome Res 21:725–733. doi:10.​1101/​gr.​115337.​110 PubMed PubMedCentral CrossRef
    Zhang X, Mu W, Zhang W (2012) On the analysis of the Illumina 450 k array data: probes ambiguously mapped to the human genome. Front Genet 3:73. doi:10.​3389/​fgene.​2012.​00073 PubMed PubMedCentral
    Zhang X, Moen EL, Liu C, Mu W, Gamazon ER, Delaney SM et al (2014) Linking the genetic architecture of cytosine modifications with human complex traits. Hum Mol Genet 23:5893–5905. doi:10.​1093/​hmg/​ddu313 PubMed PubMedCentral CrossRef
    Zhang W, Gamazon ER, Zhang X, Konkashbaev A, Liu C, Szilagyi KL et al (2015) SCAN database: facilitating integrative analyses of cytosine modification and expression QTL. Database (Oxford). doi:10.​1093/​database/​bav025
  • 作者单位:Zhou Zhang (1) (2)
    Yinan Zheng (2) (3)
    Xu Zhang (4)
    Cong Liu (5)
    Brian Thomas Joyce (2) (6)
    Warren A. Kibbe (7)
    Lifang Hou (2) (8)
    Wei Zhang (2) (8) (9)

    1. Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
    2. Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA
    3. Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
    4. Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
    5. Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
    6. Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, 60612, USA
    7. Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD, 20850, USA
    8. The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
    9. Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Molecular Medicine
    Internal Medicine
    Metabolic Diseases
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1203
文摘
Inter-individual variation in cytosine modifications has been linked to complex traits in humans. Cytosine modification variation is partially controlled by single nucleotide polymorphisms (SNPs), known as modified cytosine quantitative trait loci (mQTL). However, little is known about the role of short tandem repeat polymorphisms (STRPs), a class of structural genetic variants, in regulating cytosine modifications. Utilizing the published data on the International HapMap Project lymphoblastoid cell lines (LCLs), we assessed the relationships between 721 STRPs and the modification levels of 283,540 autosomal CpG sites. Our findings suggest that, in contrast to the predominant cis-acting mode for SNP-based mQTL, STRPs are associated with cytosine modification levels in both cis-acting (local) and trans-acting (distant) modes. In local scans within the ±1 Mb windows of target CpGs, 21, 9, and 21 cis-acting STRP-based mQTL were detected in CEU (Caucasian residents from Utah, USA), YRI (Yoruba people from Ibadan, Nigeria), and the combined samples, respectively. In contrast, 139,420, 76,817, and 121,866 trans-acting STRP-based mQTL were identified in CEU, YRI, and the combined samples, respectively. A substantial proportion of CpG sites detected with local STRP-based mQTL were not associated with SNP-based mQTL, suggesting that STRPs represent an independent class of mQTL. Functionally, genetic variants neighboring CpG-associated STRPs are enriched with genome-wide association study (GWAS) loci for a variety of complex traits and diseases, including cancers, based on the National Human Genome Research Institute (NHGRI) GWAS Catalog. Therefore, elucidating these STRP-based mQTL in addition to SNP-based mQTL can provide novel insights into the genetic architectures of complex traits. L. Hou and W. Zhang contributed equally to this work as senior authors.Electronic supplementary materialThe online version of this article (doi:10.​1007/​s00439-015-1628-4) contains supplementary material, which is available to authorized users.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700