Novel mutations of PKD genes in the Czech population with autosomal dominant polycystic kidney disease
详细信息    查看全文
  • 作者:Lena Obeidova (1)
    Veronika Elisakova (1)
    Jitka Stekrova (1)
    Jana Reiterova (2)
    Miroslav Merta (1)
    Vladimir Tesar (2)
    Frantisek Losan (3)
    Milada Kohoutova (1)

    1. Institute of Biology and Medical Genetics of the First Faculty of Medicine and General University Hospital
    ; Albertov 4 ; 128 00 ; Prague ; Czech Republic
    2. Department of Nephrology of the First Faculty of Medicine and General University Hospital
    ; U Nemocnice 2 ; 128 08 ; Prague ; Czech Republic
    3. Genetika Plze艌
    ; s.r.o. ; Parkov谩 1254/11a ; 326 00 ; Plze艌-膶ernice ; Czech Republic
  • 关键词:ADPKD ; PKD gene ; Mutational analysis ; Mutation ; HRM ; MLPA ; Polycystic kidney disease
  • 刊名:BMC Medical Genetics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:326 KB
  • 参考文献:1. Gabow, PA (1993) Autosomal dominant polycystic kidney disease. N Engl J Med 329: pp. 332-342 56/NEJM199307293290508" target="_blank" title="It opens in new window">CrossRef
    The polycystic kidney disease I gene encodes a 14聽kb transcript and lies within a duplicated region on chromosome 16. Cell 77: pp. 881-894 CrossRef
    2. Kimberling, WJ, Kumar, S, Gabow, PA, Kenyon, JB, Connolly, CJ, Somlo, S (1993) Autosomal dominant polycystic kidney disease: localization of the second gene to chromosome 4q13-q23. Genomics 18: pp. 467-472 543(11)80001-7" target="_blank" title="It opens in new window">CrossRef
    3. Tan, YC, Blumenfeld, J, Rennert, H (1812) Autosomal dominant polycystic kidney disease: genetics, mutations and microRNAs. Biochim Biophys Acta 2011: pp. 1202-1212
    4. Hateboer, N, van Dijk, MA, Bogdanova, N, Coto, E, Saggar-Malik, AK, San Millan, JL, Torra, R, Breuning, M, Ravine, D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2: European PKD1-PKD2 study group. Lancet 353: pp. 103-107 5-3" target="_blank" title="It opens in new window">CrossRef
    5. Cornec-Le Gall, E, Audr茅zet, MP, Chen, JM, Hourmant, M, Morin, MP, Perrichot, R, Charasse, C, Whebe, B, Renaudineau, E, Jousset, P, Guillodo, MP, Grall-Jezequel, A, Saliou, P, F茅rec, C, Le Meur, Y (2013) Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol 24: pp. 1006-1013 50" target="_blank" title="It opens in new window">CrossRef
    6. Daoust, MC, Reynolds, DM, Bichet, DG, Somlo, S (1995) Evidence for a third genetic locus for autosomal dominant polycystic kidney disease. Genomics 25: pp. 733-736 543(95)80020-M" target="_blank" title="It opens in new window">CrossRef
    7. Paul, BM, Consugar, MB, Ryan Lee, M, Sundsbak, JL, Heyer, CM, Rossetti, S, Kubly, VJ, Hopp, K, Torres, VE, Coto, E, Clementi, M, Bogdanova, N, de Almeida, E, Bichet, DG, Harris, PC (2013) Evidence of a third ADPKD locus is not supported by re-analysis of designated PKD3 families. Kidney Int 85: pp. 383-392 CrossRef
    8. Nauli, SM, Alenghat, FJ, Luo, Y, Williams, E, Vassilev, P, Li, X, Elia, AE, Lu, W, Brown, EM, Quinn, SJ, Ingberg, DE, Zhou, J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33: pp. 129-137 CrossRef
    9. Torres, VE, Harris, PC (2009) Autosomal dominant polycystic kidney disease: the last 3聽years. Kidney Int 76: pp. 149-168 CrossRef
    10. Rossetti, S, Burton, S, Strmecki, L, Pond, GR, San Mill谩n, JL, Zerres, K, Barratt, TM, Ozen, S, Torres, VE, Bergstralh, EJ, Winearls, CG, Harris, PC (2002) The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J Am Soc Nephrol 13: pp. 1230-1237 CrossRef
    11. Rossetti, S, Consugar, MB, Chapman, AB, Torres, VE, Guay-Woodford, LM, Grantham, JJ, Bennett, WM, Meyers, CM, Walker, DL, Bae, K, Zhang, QJ, Thompson, PA, Miller, JP, Harris, PC (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18: pp. 2143-2160 CrossRef
    12. Gout, AM, Martin, NC, Brown, AF, Ravine, D (2007) PKDB: polycystic kidney disease mutation database鈥揳 gene variant database for autosomal dominant polycystic kidney disease. Hum Mutat 28: pp. 654-659 CrossRef
    13. Bogdanova, N, Markoff, A, Gerke, V, McCluskey, M, Horst, J, Dworniczak, B (2001) Homologues to the first gene for autosomal dominant polycystic kidney disease are pseudogenes. Genomics 74: pp. 333-341 568" target="_blank" title="It opens in new window">CrossRef
    14. Rossetti, S, Kubly, VJ, Consugar, MB, Hopp, K, Roy, S, Horsley, SW, Chauveau, D, Rees, L, Barratt, TM, van鈥檛 Hoff, WG, Niaudet, P, Torres, VE, Harris, PC (2009) Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int 75: pp. 848-855 CrossRef
    15. Reiterov谩, J, 艩tekrov谩, J, Merta, M, Kotlas, J, Eli拧谩kov谩, V, Ln臎ni膷ka, P, Korabe膷n谩, M, Kohoutov谩, M, Tesa艡, V (2013) Autosomal dominant polycystic kidney disease in a family with mosaicism and hypomorphic allele. BMC Nephrol 14: pp. 59 59" target="_blank" title="It opens in new window">CrossRef
    16. Bergmann, C, van Bothmer, J, Ortiz Br眉chle, N, Venghaus, A, Frank, V, Fehrenbach, H, Hampel, T, Pape, L, Buske, A, Jonsson, J, Sarioglu, N, Santos, A, Ferreira, JC, Becker, JU, Cremer, R, Hoefele, J, Benz, MR, Weber, LT, Buettner, R, Zerres, K (2011) Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol 22: pp. 2047-2056 CrossRef
    17. Consugar, MB, Wong, WC, Lundquist, PA, Rossetti, S, Kubly, VJ, Walker, DL, Rangel, LJ, Aspinwall, R, Niaudet, WP, Ozen, S, David, A, Velinov, M, Bergstralh, EJ, Bae, KT, Chapman, AB, Guay-Woodford, LM, Grantham, JJ, Torres, VE, Sampson, JR, Dawson, BD, Harris, PC (2008) Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome. Kidney Int 74: pp. 1468-1479 5" target="_blank" title="It opens in new window">CrossRef
    18. Connor, A, Lunt, PW, Dolling, C, Patel, Y, Meredith, AL, Gardner, A, Hamilton, NK, Dudley, CR (2008) Mosaicism in autosomal dominant polycystic kidney disease revealed by genetic testing to enable living related renal transplantation. Am J Transplant 8: pp. 232-237
    19. Chapman, AB, Guay-Woodford, LM, Grantham, JJ, Torres, VE, Bae, KT, Baumgarten, DA, Kenney, PJ, King, BF, Glockner, JF, Wetzel, LH, Brummer, ME, O鈥橬eill, WC, Robbin, ML, Bennett, WM, Klahr, S, Hirschman, GH, Kimmel, PL, Thompson, PA, Miller, JP (2003) Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the consortium for radiologic imaging studies of polycystic kidney disease (CRISP) cohort. Kidney Int 64: pp. 1035-1045 523-1755.2003.00185.x" target="_blank" title="It opens in new window">CrossRef
    20. Pei, Y (2006) Diagnostic approach in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 1: pp. 1108-1114 5/CJN.02190606" target="_blank" title="It opens in new window">CrossRef
    21. Harris, PC, Rossetti, S (2010) Molecular diagnostics for autosomal dominant polycystic kidney disease. Nat Rev Nephrol 6: pp. 197-206 CrossRef
    22. Bataille, S, Berland, Y, Fontes, M, Burtey, S (2011) High resolution melt analysis for mutation screening in PKD1 and PKD2. BMC Nephrol 12: pp. 57 57" target="_blank" title="It opens in new window">CrossRef
    23. Rossetti, S, Hopp, K, Sikkink, RA, Sundsbak, JL, Lee, YK, Kubly, VJ, Eckloff, BW, Ward, CJ, Winearls, CG, Torres, VE, Harris, PC (2012) Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol 23: pp. 915-933 CrossRef
    24. Qi, XP, Du, ZF, Ma, JM, Chen, XL, Zhang, Q, Fei, J, Wei, XM, Chen, D, Ke, HP, Liu, XZ, Li, F, Chen, ZG, Su, Z, Jin, HY, Liu, WT, Zhao, Y, Jiang, HL, Lan, ZZ, Li, PF, Fang, MY, Dong, W, Zhang, XN (2013) Genetic diagnosis of autosomal dominant polycystic kidney disease by targeted capture and next-generation sequencing: utility and limitations. Gene 516: pp. 93-100 CrossRef
    25. Pei, Y, Obaji, J, Dupuis, A, Paterson, AD, Magistroni, R, Dicks, E, Parfrey, P, Cramer, B, Coto, E, Torra, R, San Millan, JL, Gibson, R, Breuning, M, Peters, D, Ravine, D (2009) Unified criteria for ultrasonographic diagnosis of ADPKD. J Am Soc Nephrol 20: pp. 205-212 50507" target="_blank" title="It opens in new window">CrossRef
    26. Watnick, TJ, Piontek, KB, Cordal, TM, Weber, H, Gandolph, MA, Qian, F, Lens, XM, Neumann, HP, Germino, GG (1997) An unusual pattern of mutation in the duplicated portion of PKD1 is revealed by use of a novel strategy for mutation detection. Hum Mol Genet 6: pp. 1473-1481 CrossRef
    27. Tan, YC, Blumenfeld, JD, Anghel, R, Donahue, S, Belenkaya, R, Balina, M, Parker, T, Levine, D, Leonard, DG, Rennert, H (2009) Novel method for genomic analysis of PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease. Hum Mutat 30: pp. 264-273 CrossRef
    28. Chateigner-Boutin, AL, Small, I (2007) A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons. Nucleic Acids Res 35: pp. e114 CrossRef
    29. Schouten, JP, McElgunn, CJ, Waaijer, R, Zwijnenburg, D, Diepvens, F, Pals, G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30: pp. e57 56" target="_blank" title="It opens in new window">CrossRef
    30. Ramensky, V, Bork, P, Sunyaev, S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30: pp. 3894-3900 CrossRef
    31. Thusberg, J, Olatubosun, A, Vihinen, M (2011) Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 32: pp. 358-368 5" target="_blank" title="It opens in new window">CrossRef
    32. Ng, PC, Henikoff, S (2002) Accounting for human polymorphisms predicted to affect protein function. Genome Res 12: pp. 436-446 CrossRef
    33. Brunak, S, Engelbrecht, J, Knudsen, S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220: pp. 49-65 CrossRef
    34. Desmet, FO, Hamroun, D, Lalande, M, Collod-B茅roud, G, Claustres, M, B茅roud, C (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37: pp. e67 5" target="_blank" title="It opens in new window">CrossRef
    35. Audr茅zet, MP, Cornec-Le Gall, E, Chen, JM, Redon, S, Qu茅r茅, I, Creff, J, B茅nech, C, Maestri, S, Le Meur, Y, F茅rec, C (2012) Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum Mutat 33: pp. 1239-1250 CrossRef
    36. Rossetti, S, Strmecki, L, Gamble, V, Burton, S, Sneddon, V, Peral, B, Roy, S, Bakkaloglu, A, Komel, R, Winearls, CG, Harris, PC (2001) Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am J Hum Genet 68: pp. 46-63 CrossRef
    37. Inoue, S, Inoue, K, Utsunomiya, M, Nozaki, J, Yamada, Y, Iwasa, T, Mori, E, Yoshinaga, T, Koizumi, A (2002) Mutation analysis in PKD1 of Japanese autosomal dominant polycystic kidney disease patients. Hum Mutat 19: pp. 622-628 CrossRef
    38. Yu, C, Yang, Y, Zou, L, Hu, Z, Li, J, Liu, Y, Ma, Y, Ma, M, Su, D, Zhang, S (2011) Identification of novel mutations in Chinese Hans with autosomal dominant polycystic kidney disease. BMC Med Genet 12: pp. 164 50-12-164" target="_blank" title="It opens in new window">CrossRef
    39. Zhang, S, Mei, C, Zhang, D, Dai, B, Tang, B, Sun, T, Zhao, H, Zhou, Y, Li, L, Wu, Y, Wang, W, Shen, X, Song, J (2005) Mutation analysis of autosomal dominant polycystic kidney disease genes in Han Chinese. Nephron Exp Nephrol 100: pp. e63-e76 59/000084572" target="_blank" title="It opens in new window">CrossRef
    40. Turco, AE, Rossetti, S, Bresin, E, Corr脿, S, Restagno, G, Carbonara, A, De Prisco, O, Gammaro, L, Maschio, G, Pignatti, PF (1996) Detection of two different nonsense mutations in exon 44 of the PKD1 gene in two unrelated Italian families with severe autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 11: pp. 10-12 CrossRef
    41. Reiterov谩, J, Stekrov谩, J, Peters, DJ, Kapras, J, Kohoutov谩, M, Merta, M, Zidovsk谩, J (2002) Four novel mutations of the PKD2 gene in Czech families with autosomal dominant polycystic kidney disease. Hum Mutat 19: pp. 573 5" target="_blank" title="It opens in new window">CrossRef
    42. Chung, W, Kim, H, Hwang, YH, Kim, SY, Ko, AR, Ro, H, Lee, KB, Lee, JS, Oh, KH, Ahn, C (2006) PKD2 gene mutation analysis in Korean autosomal dominant polycystic kidney disease patients using two-dimensional gene scanning. Clin Genet 70: pp. 502-508 CrossRef
    43. Chen, JM, Cooper, DN, F茅rec, C, Kehrer-Sawatzki, H, Patrinos, GP (2010) Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol 20: pp. 222-233 5.007" target="_blank" title="It opens in new window">CrossRef
    44. Cooper, DN, Bacolla, A, F茅rec, C, Vasquez, KM, Kehrer-Sawatzki, H, Chen, JM (2011) On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 32: pp. 1075-1099 557" target="_blank" title="It opens in new window">CrossRef
    45. Neumann, HPH, Bacher, J, Nabulsi, Z, Ortiz Br眉chle, N, Hoffmann, MM, Schaeffner, E, N眉rnberger, J, Cybulla, M, Wilpert, J, Riegler, P, Corradini, R, Kraemer-Guth, A, Azurmendi, P, Nunez, M, Gl盲sker, S, Zerres, K, Jilg, C (2012) Adult patients with sporadic polycystic kidney disease: the importance of screening for mutations in the PKD1 and PKD2 genes. Int Urol Nephrol 44: pp. 1753-1762 55-012-0125-0" target="_blank" title="It opens in new window">CrossRef
    46. Torra, R, Badenas, C, Darnell, A, Nicolau, C, Volpini, V, Revert, L, Estivill, X (1996) Linkage, clinical features, and prognosis of autosomal dominant polycystic kidney disease types 1 and 2. J Am Soc Nephrol 7: pp. 2142-2151
    47. Hateboer, N, Veldhuisen, B, Peters, D, Breuning, MH, San Mill谩n, JL, Bogdanova, N, Coto, E, van Dijk, MA, Afzal, AR, Jeffery, S, Saggar-Malik, AK, Torra, R, Dimitrakov, D, Martinez, I, de Castro, SS, Krawczak, M, Ravine, D (2000) Location of mutations within the PKD2 gene influences clinical outcome. Kidney Int 57: pp. 1444-1451 523-1755.2000.00989.x" target="_blank" title="It opens in new window">CrossRef
    48. Garcia-Gonzalez, MA, Jones, JG, Allen, SK, Palatucci, CM, Batish, SD, Seltzer, WK, Lan, Z, Allen, E, Qian, F, Lens, XM, Pei, Y, Germino, GG, Watnick, TJ (2007) Evaluating the clinical utility of a molecular genetic test for polycystic kidney disease. Mol Genet Metab 92: pp. 160-167 5.004" target="_blank" title="It opens in new window">CrossRef
    49. Hoefele, J, Mayer, K, Scholz, M, Klein, HG (2011) Novel PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 26: pp. 2181-2188 CrossRef
    50. Tan, YC, Michaeel, A, Blumenfeld, J, Donahue, S, Parker, T, Levine, D, Rennert, H (2012) A novel long-range PCR sequencing method for genetic analysis of the entire PKD1 gene. J Mol Diagn 14: pp. 305-313 CrossRef
    51. The pre-publication history for this paper can be accessed here: 50/15/41/prepub" class="a-plus-plus">http://www.biomedcentral.com/1471-2350/15/41/prepub
  • 刊物主题:Human Genetics; Genetics and Population Dynamics;
  • 出版者:BioMed Central
  • ISSN:1471-2350
文摘
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder caused by mutation in either one of two genes, PKD1 and PKD2. High structural and sequence complexity of PKD genes makes the mutational diagnostics of ADPKD challenging. The present study is the first detailed analysis of both PKD genes in a cohort of Czech patients with ADPKD using High Resolution Melting analysis (HRM) and Multiplex Ligation-dependent Probe Amplification (MLPA). Methods The mutational analysis of PKD genes was performed in a set of 56 unrelated patients. For mutational screening of the PKD1 gene, the long-range PCR (LR-PCR) strategy followed by nested PCR was used. Resulting PCR fragments were analyzed by HRM; the positive cases were reanalyzed and confirmed by direct sequencing. Negative samples were further examined for sequence changes in the PKD2 gene by the method of HRM and for large rearrangements of both PKD1 and PKD2 genes by MLPA. Results Screening of the PKD1 gene revealed 36 different likely pathogenic germline sequence changes in 37 unrelated families/individuals. Twenty-five of these sequence changes were described for the first time. Moreover, a novel large deletion was found within the PKD1 gene in one patient. Via the mutational analysis of the PKD2 gene, two additional likely pathogenic mutations were detected. Conclusions Probable pathogenic mutation was detected in 71% of screened patients. Determination of PKD mutations and their type and localization within corresponding genes could help to assess clinical prognosis of ADPKD patients and has major benefit for prenatal and/or presymptomatic or preimplantational diagnostics in affected families as well.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700