Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent population: a simulation study in rice
详细信息    查看全文
  • 作者:Eiji Yamamoto (1) (2)
    Hiroyoshi Iwata (3)
    Takanari Tanabata (4)
    Ritsuko Mizobuchi (1)
    Jun-ichi Yonemaru (1)
    Toshio Yamamoto (1)
    Masahiro Yano (5) (6)

    1. National Institute of Agrobiological Sciences
    ; 2-1-2 Kannondai ; Tsukuba ; Ibaraki ; 305-8602 ; Japan
    2. NARO Institute of Vegetable and Tea Science
    ; National Agriculture and Food Research Organization ; 360 Kusawa ; Ano ; Tsu ; Mie ; 514-2392 ; Japan
    3. Graduate School of Agricultural and Life Sciences
    ; The University of Tokyo ; 1-1-1 Yayoi ; Bunkyo ; Tokyo ; 113-8657 ; Japan
    4. Gene Discovery Research Group
    ; RIKEN Center for Sustainable Resource Science ; 3-1-1 ; Tsukuba ; Ibaraki ; 305-0074 ; Japan
    5. National Institute of Agrobiological Sciences
    ; 1-2 Ohwashi ; Tsukuba ; Ibaraki ; 305-8634 ; Japan
    6. NARO Institute of Crop Science
    ; National Agriculture and Food Research Organization ; 2-1-18 Kannondai ; Tsukuba ; Ibaraki ; 305-8518 ; Japan
  • 关键词:QTL ; Rice ; Simulation ; Advanced intercrossing
  • 刊名:BMC Genetics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:873 KB
  • 参考文献:1. Huang, X, Wei, X, Sang, T, Zhao, Q, Feng, Q, Zhao, Y, Li, C, Zhu, C, Lu, T, Zhang, Z, Li, M, Fan, D, Guo, Y, Wang, A, Wang, L, Deng, L, Li, W, Lu, Y, Weng, Q, Liu, K, Huang, T, Zhou, T, Jing, Y, Li, W, Lin, Z, Buckler, ES, Qian, Q, Zhang, QF, Li, J, Han, B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42: pp. 961-967 CrossRef
    2. Huang, X, Zhao, Y, Wei, X, Li, C, Wang, A, Zhao, Q, Li, W, Guo, Y, Deng, L, Zhu, C, Fan, D, Lu, Y, Weng, Q, Liu, K, Zhou, T, Jing, Y, Si, L, Dong, G, Huang, T, Lu, T, Feng, Q, Qian, Q, Li, J, Han, B (2011) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44: pp. 32-39 CrossRef
    3. Iwata, H, Uga, Y, Yoshioka, Y, Ebana, K, Hayashi, T (2007) Bayesian association mapping of multiple quantitative trait loci and its application to the analysis of genetic variation among Oryza sativa L. germplasms. Theor Appl Genet 114: pp. 1437-1449 CrossRef
    4. Iwata, H, Ebana, K, Fukuoka, S, Jannink, JL, Hayashi, T (2009) Bayesian multilocus association mapping on ordinal and censored traits and its application to the analysis of genetic variation among Oryza sativa L. germplasms. Theor Appl Genet 118: pp. 865-880 45-6" target="_blank" title="It opens in new window">CrossRef
    5. Zhao, K, Tung, CW, Eizenga, GC, Wright, MH, Ali, ML, Price, AH, Norton, GJ, Islam, MR, Reynolds, A, Mezey, J, McClung, AM, Bustamante, CD, McCouch, SR (2012) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2: pp. 467 467" target="_blank" title="It opens in new window">CrossRef
    6. Hamblin, MT, Buckler, ES, Jannink, JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27: pp. 98-106 CrossRef
    7. Lander, ES, Schork, NJ (1994) Genetic dissection of complex traits. Science 265: pp. 2037-2048 science.8091226" target="_blank" title="It opens in new window">CrossRef
    8. Yu, J, Holland, JB, McMullen, MD, Buckler, ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178: pp. 539-551 4/genetics.107.074245" target="_blank" title="It opens in new window">CrossRef
    9. Broman, KW (2005) The genomes of recombinant inbred lines. Genetics 169: pp. 1133-1146 4/genetics.104.035212" target="_blank" title="It opens in new window">CrossRef
    10. Broman, KW (2012) Genotype probabilities at intermediate generations in the construction of recombinant inbred lines. Genetics 190: pp. 403-412 4/genetics.111.132647" target="_blank" title="It opens in new window">CrossRef
    11. Huang, BE, George, AW (2011) R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics 27: pp. 727-729 CrossRef
    12. Macdonald, SJ, Long, AD (2007) Joint estimates of quantitative trait locus effect and frequency using synthetic recombinant populations of Drosophila melanogaster. Genetics 176: pp. 1261-1281 4/genetics.106.069641" target="_blank" title="It opens in new window">CrossRef
    13. Mott, R, Talbot, CJ, Turri, MG, Collins, AC, Flint, J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97: pp. 12649-12654 4397" target="_blank" title="It opens in new window">CrossRef
    14. Teuscher, F, Broman, KW (2007) Haplotype probabilities for multiple-strain recombinant inbred lines. Genetics 175: pp. 1267-1274 4/genetics.106.064063" target="_blank" title="It opens in new window">CrossRef
    15. Valdar, W, Solberg, LC, Gauguier, D, Burnett, S, Klenerman, P, Cookson, WO, Taylor, MS, Rawlins, JN, Mott, R, Flint, J (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38: pp. 879-887 40" target="_blank" title="It opens in new window">CrossRef
    The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36: pp. 1133-1137
    16. Welsh, CE, Miller, DR, Manly, KF, Wang, J, McMillan, L, Morahan, G, Mott, R, Iraqi, FA, Threadgill, DW, de Villena, FP (2012) Status and access to the Collaborative Cross population. Mamm Genome 23: pp. 706-712 410-6" target="_blank" title="It opens in new window">CrossRef
    17. Cavanagh, C, Morell, M, Mackay, I, Powell, W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11: pp. 215-221 CrossRef
    18. Kover, PX, Valdar, W, Trakalo, J, Scarcelli, N, Ehrenreich, IM, Purugganan, MD, Durrant, C, Mott, R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5: pp. e1000551 CrossRef
    19. Huang, BE, George, AW, Forrest, KL, Kilian, A, Hayden, MJ, Morell, MK, Cavanagh, CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10: pp. 826-839 467-7652.2012.00702.x" target="_blank" title="It opens in new window">CrossRef
    20. Bandillo, N, Raghavan, C, Muyco, PA, Sevilla, MA, Lobina, IT, Dilla-Ermita, CJ, Tung, CW, McCouch, S, Thomson, M, Mauleon, R, Singh, RK, Gregorio, G, Leung, H (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice (N Y) 6: pp. 11
    21. Asano, K, Yamasaki, M, Takuno, S, Miura, K, Katagiri, S, Ito, T, Doi, K, Wu, J, Ebana, K, Matsumoto, T, Innan, H, Kitano, H, Ashikari, M, Matsuoka, M (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci U S A 108: pp. 11034-11039 490108" target="_blank" title="It opens in new window">CrossRef
    22. Ashikari, M, Sakakibara, H, Lin, S, Yamamoto, T, Takashi, T, Nishimura, A, Angeles, ER, Qian, Q, Kitano, H, Matsuoka, M (2005) Cytokinin oxidase regulates rice grain production. Science 309: pp. 741-745 science.1113373" target="_blank" title="It opens in new window">CrossRef
    23. Miyamoto, N, Goto, Y, Matsui, M, Ukai, Y, Morita, M, Nemoto, K (2004) Quantitative trait loci for phyllochron and tillering in rice. Theor Appl Genet 109: pp. 700-706 4-1690-0" target="_blank" title="It opens in new window">CrossRef
    24. Monna, L, Lin, X, Kojima, S, Sasaki, T, Yano, M (2002) Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104: pp. 772-778 CrossRef
    25. Shen, B, Yu, WD, Du, JH, Fan, YY, Wu, JR, Zhuang, JY (2011) Validation and dissection of quantitative trait loci for leaf traits in interval RM4923-RM402 on the short arm of rice chromosome 6. J Genet 90: pp. 39-44 41-011-0019-4" target="_blank" title="It opens in new window">CrossRef
    26. Thomson, MJ, Edwards, JD, Septiningsih, EM, Harrington, SE, McCouch, SR (2006) Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172: pp. 2501-2514 4/genetics.105.050500" target="_blank" title="It opens in new window">CrossRef
    27. Yonemaru, JI, Yamamoto, T, Fukuoka, S, Uga, Y, Hori, K, Yano, M (2010) Q-TARO: QTL Annotation Rice Online Database. Rice (N Y) 3: pp. 194-203
    28. Yamamoto, E, Yonemaru, J, Yamamoto, T, Yano, M (2012) OGRO: the Overview of functionally characterized Genes in Rice online database. Rice (N Y) 5: pp. 26
    29. Jiang, C, Zeng, ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: pp. 1111-1127
    30. Kao, CH, Zeng, ZB, Teasdale, RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152: pp. 1203-1216
    31. Li, H, Bradbury, P, Ersoz, E, Buckler, ES, Wang, J (2011) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS One 6: pp. e17573 CrossRef
    32. Ronin, YI, Korol, AB, Nevo, E (1999) Single- and multiple-trait mapping analysis of linked quantitative trait loci. Some asymptotic analytical approximations. Genetics 151: pp. 387-396
    33. Mayer, M (2005) A comparison of regression interval mapping and multiple interval mapping for linked QTL. Heredity 94: pp. 599-605 CrossRef
    34. Kao, CH, Zeng, MH (2010) An investigation of the power for separating closely linked QTL in experimental populations. Genet Res 92: pp. 283-294 CrossRef
    35. Li, H, Hearne, S, B盲nziger, M, Li, Z, Wang, J (2010) Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity (Edinb) 105: pp. 257-267 CrossRef
    36. Valdar, W, Flint, J, Mott, R (2006) Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 172: pp. 1783-1797 4/genetics.104.039313" target="_blank" title="It opens in new window">CrossRef
    37. Harushima, Y, Yano, M, Shomura, A, Sato, M, Shimano, T, Kuboki, Y, Yamamoto, T, Lin, SY, Antonio, BA, Parco, A, Kajiya, H, Huang, N, Yamamoto, K, Nagamura, Y, Kurata, N, Khush, GS, Sasaki, T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148: pp. 479-494
    38. Arends, D, Prins, P, Jansen, RC, Broman, KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26: pp. 2990-2992 CrossRef
    39. Stephenson, A (2003) evd: extreme value distributions. R News 2: pp. 31-32
    40. Darvasi, A, Soller, M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141: pp. 1199-1207
    41. Gong, J, Zheng, H, Wu, Z, Chen, T, Zhao, X (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27: pp. 996-1005 CrossRef
    42. Zhang, YX, Perry, K, Vinci, VA, Powell, K, Stemmer, WP, del Cardayr茅, SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: pp. 644-646 415644a" target="_blank" title="It opens in new window">CrossRef
    43. Zhao, K, Wright, M, Kimball, J, Eizenga, G, McClung, A, Kovach, M, Tyagi, W, Ali, ML, Tung, CW, Reynolds, A, Bustamante, CD, McCouch, SR (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5: pp. e10780 CrossRef
    44. Ebana, K, Yonemaru, JI, Fukuoka, S, Iwata, H, Kanamori, H, Namiki, N, Nagasaki, H, Yano, M (2010) Genetic structure revealed by a whole-genome single-nucleotide polymorphism survey of diverse accessions of cultivated Asian rice (Oryza sativa L.). Breed Sci 60: pp. 390-397 CrossRef
    45. McCouch, SR, Zhao, K, Wright, M, Tung, CW, Ebana, K, Thomson, M, Reynolds, A, Wang, D, DeClerck, G, Ali, ML, McClung, A, Eizenga, G, Bustamante, C (2010) Development of genome-wide SNP assays for rice. Breed Sci 60: pp. 524-535 4" target="_blank" title="It opens in new window">CrossRef
    46. McNally, KL, Childs, KL, Bohnert, R, Davidson, RM, Zhao, K, Ulat, VJ, Zeller, G, Clark, RM, Hoen, DR, Bureau, TE, Stokowski, R, Ballinger, DG, Frazer, KA, Cox, DR, Padhukasahasram, B, Bustamante, CD, Weigel, D, Mackill, DJ, Bruskiewich, RM, R盲tsch, G, Buell, CR, Leung, H, Leach, JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A 106: pp. 12273-12278 CrossRef
    47. Nagasaki, H, Ebana, K, Shibaya, T, Yonemaru, JI, Yano, M (2010) Core single-nucleotide polymorphisms鈥攁 tool for genetic analysis of the Japanese rice population. Breed Sci 60: pp. 648-655 48" target="_blank" title="It opens in new window">CrossRef
    48. Yamamoto, T, Nagasaki, H, Yonemaru, J, Ebana, K, Nakajima, M, Shibaya, T, Yano, M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11: pp. 267 471-2164-11-267" target="_blank" title="It opens in new window">CrossRef
    49. Huang, X, Kurata, N, Wei, X, Wang, ZX, Wang, A, Zhao, Q, Zhao, Y, Liu, K, Lu, H, Li, W, Guo, Y, Lu, Y, Zhou, C, Fan, D, Weng, Q, Zhu, C, Huang, T, Zhang, L, Wang, Y, Feng, L, Furuumi, H, Kubo, T, Miyabayashi, T, Yuan, X, Xu, Q, Dong, G, Zhan, Q, Li, C, Fujiyama, A, Toyoda, A (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490: pp. 497-501 CrossRef
  • 刊物主题:Life Sciences, general; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics; Genetics and Population Dynamics;
  • 出版者:BioMed Central
  • ISSN:1471-2156
文摘
Background In genetic analysis of agronomic traits, quantitative trait loci (QTLs) that control the same phenotype are often closely linked. Furthermore, many QTLs are localized in specific genomic regions (QTL clusters) that include naturally occurring allelic variations in different genes. Therefore, linkage among QTLs may complicate the detection of each individual QTL. This problem can be resolved by using populations that include many potential recombination sites. Recently, multi-parent populations have been developed and used for QTL analysis. However, their efficiency for detection of linked QTLs has not received attention. By using information on rice, we simulated the construction of a multi-parent population followed by cycles of recurrent crossing and inbreeding, and we investigated the resulting genome structure and its usefulness for detecting linked QTLs as a function of the number of cycles of recurrent crossing. Results The number of non-recombinant genome segments increased linearly with an increasing number of cycles. The mean and median lengths of the non-recombinant genome segments decreased dramatically during the first five to six cycles, then decreased more slowly during subsequent cycles. Without recurrent crossing, we found that there is a risk of missing QTLs that are linked in a repulsion phase, and a risk of identifying linked QTLs in a coupling phase as a single QTL, even when the population was derived from eight parental lines. In our simulation results, using fewer than two cycles of recurrent crossing produced results that differed little from the results with zero cycles, whereas using more than six cycles dramatically improved the power under most of the conditions that we simulated. Conclusion Our results indicated that even with a population derived from eight parental lines, fewer than two cycles of crossing does not improve the power to detect linked QTLs. However, using six cycles dramatically improved the power, suggesting that advanced intercrossing can help to resolve the problems that result from linkage among QTLs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700