Genomic regions involved in yield potential detected by genome-wide association analysis in Japanese high-yielding rice cultivars
详细信息    查看全文
  • 作者:Jun-ichi Yonemaru (29)
    Ritsuko Mizobuchi (29)
    Hiroshi Kato (29) (30)
    Toshio Yamamoto (29)
    Eiji Yamamoto (29) (31)
    Kazuki Matsubara (30)
    Hideyuki Hirabayashi (30)
    Yoshinobu Takeuchi (30)
    Hiroshi Tsunematsu (30)
    Takuro Ishii (30)
    Hisatoshi Ohta (30) (32)
    Hideo Maeda (30) (33)
    Kaworu Ebana (29)
    Masahiro Yano (29) (30)

    29. National Institute of Agrobiological Sciences
    ; 2-1-2 Kannondai ; Tsukuba ; Ibaraki ; 305-8602 ; Japan
    30. NARO Institute of Crop Science
    ; 2-1-18 Kannondai ; Tsukuba ; Ibaraki ; 305-8518 ; Japan
    31. NARO Institute of Vegetable and Tea Science
    ; 360 Kusawa ; Ano ; Tsu ; Mie ; 514-2392 ; Japan
    32. NARO Tohoku Agricultural Research Center
    ; 3 Yotsusya ; Daisen ; Akita ; 014-0102 ; Japan
    33. NARO Hokuriku Agricultural Research Center
    ; 1-2-1 Inada ; Jyoetsu ; Niigata ; 943-0193 ; Japan
  • 关键词:Rice ; High yield ; Indica ; Japonica ; Introgression ; Single ; nucleotide polymorphisms (SNPs) ; Association mapping
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:715 KB
  • 参考文献:1. United Nations, Department of Economic and Social Affairs, Population Division: / World Population Prospects: The 2010 Revision, Highlights and Advance Tables. Working Paper No. ESA/P/WP.220
    2. Hargrove, TR, Cabanilla, VL (1979) Impact of semi-dwarf varieties on Asian rice-breeding programs. Bioscience 29: pp. 731-735 CrossRef
    3. Khush, GS (1999) Green revolution: preparing for the 21st century. Genome 42: pp. 646-655 44" target="_blank" title="It opens in new window">CrossRef
    4. Foster, KW, Rutger, JN (1978) Inheritance of semidwarfism in rice, Oryza sativa L. Genetics 88: pp. 559-574
    5. Fan, C, Xing, Y, Mao, H, Lu, T, Han, B, Xu, C, Li, X, Zhang, Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112: pp. 1164-1171 CrossRef
    6. Weng, J, Gu, S, Wan, X, Gao, H, Guo, T, Su, N, Lei, C, Zhang, X, Cheng, Z, Guo, X, Wang, J, Jiang, L, Zhai, H, Wan, J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18: pp. 1199-1209 CrossRef
    7. Shomura, A, Izawa, T, Ebana, K, Ebitani, T, Kanegae, H, Konishi, S, Yano, M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40: pp. 1023-1028 CrossRef
    8. Li, Y, Fan, C, Xing, Y, Jiang, Y, Luo, L, Sun, L, Shao, D, Xu, C, Li, X, Xiao, J, He, Y, Zhang, Q (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43: pp. 1266-1269 CrossRef
    9. Wang, S, Wu, K, Yuan, Q, Liu, X, Liu, Z, Lin, X, Zeng, R, Zhu, H, Dong, G, Qian, Q, Zhang, G, Fu, X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44: pp. 950-954 CrossRef
    10. Ishimaru, K, Hirotsu, N, Madoka, Y, Murakami, N, Hara, N, Onodera, H, Kashiwagi, T, Ujiie, K, Shimizu, B-i, Onishi, A, Miyagawa, H, Katoh, E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45: pp. 707-711 CrossRef
    11. Wu, W, Zheng, XM, Lu, G, Zhong, Z, Gao, H, Chen, L, Wu, C, Wang, HJ, Wang, Q, Zhou, K, Wang, JL, Wu, F, Zhang, X, Guo, X, Cheng, Z, Lei, C, Lin, Q, Jiang, L, Wang, H, Ge, S, Wan, J (2013) Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci 110: pp. 2775-2780 CrossRef
    12. Xue, W, Xing, Y, Weng, X, Zhao, Y, Tang, W, Wang, L, Zhou, H, Yu, S, Xu, C, Li, X, Zhang, Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40: pp. 761-767 43" target="_blank" title="It opens in new window">CrossRef
    13. Kato, H (2008) Development of rice varieties for whole crop silage (WCS) in Japan. Jpn Agr Res Q 42: pp. 231-236 42.231" target="_blank" title="It opens in new window">CrossRef
    14. Ebana, K, Yonemaru, J-i, Fukuoka, S, Iwata, H, Kanamori, H, Namiki, N, Nagasaki, H, Yano, M (2010) Genetic structure revealed by a whole-genome single-nucleotide polymorphism survey of diverse accessions of cultivated Asian rice (Oryza sativa L.). Breed Sci 60: pp. 390-397 CrossRef
    15. Zhao, K, Wright, M, Kimball, J, Eizenga, G, McClung, A, Kovach, M, Tyagi, W, Ali, ML, Tung, CW, Reynolds, A, Bustamante, CD, McCouch, SR (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5: pp. e10780 CrossRef
    16. Zhao, K, Tung, CW, Eizenga, GC, Wright, MH, Ali, ML, Price, AH, Norton, GJ, Islam, MR, Reynolds, A, Mezey, J, McClung, AM, Bustamante, CD, McCouch, SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2: pp. 467 467" target="_blank" title="It opens in new window">CrossRef
    17. Xu, X, Liu, X, Ge, S, Jensen, JD, Hu, F, Li, X, Dong, Y, Gutenkunst, RN, Fang, L, Huang, L, Li, J, He, W, Zhang, G, Zheng, X, Zhang, F, Li, Y, Yu, C, Kristiansen, K, Zhang, X, Wang, J, Wright, M, McCouch, S, Nielsen, R, Wang, W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30: pp. 105-111 CrossRef
    18. Subbaiyan, GK, Waters, DL, Katiyar, SK, Sadananda, AR, Vaddadi, S, Henry, RJ (2012) Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotechnol J 10: pp. 623-634 467-7652.2011.00676.x" target="_blank" title="It opens in new window">CrossRef
    19. Huang, X, Kurata, N, Wei, X, Wang, Z-X, Wang, A, Zhao, Q, Zhao, Y, Liu, K, Lu, H, Li, W, Guo, Y, Lu, Y, Zhou, C, Fan, D, Weng, Q, Zhu, C, Huang, T, Zhang, L, Wang, Y, Feng, L, Furuumi, H, Kubo, T, Miyabayashi, T, Yuan, X, Xu, Q, Dong, G, Zhan, Q, Li, C, Fujiyama, A, Toyoda, A (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490: pp. 497-501 CrossRef
    20. Yamamoto, T, Nagasaki, H, Yonemaru, JI, Ebana, K, Nakajima, M, Shibaya, T, Yano, M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11: pp. 267 471-2164-11-267" target="_blank" title="It opens in new window">CrossRef
    21. Chen, H, He, H, Zou, Y, Chen, W, Yu, R, Liu, X, Yang, Y, Gao, YM, Xu, JL, Fan, LM, Li, Y, Li, ZK, Deng, XW (2011) Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet 123: pp. 869-879 CrossRef
    22. Yonemaru, J-i, Yamamoto, T, Ebana, K, Yamamoto, E, Nagasaki, H, Shibaya, T, Yano, M (2012) Genome-wide haplotype changes produced by artificial selection during modern rice breeding in Japan. PLoS One 7: pp. e32982 CrossRef
    23. Abe, A, Kosugi, S, Yoshida, K, Natsume, S, Takagi, H, Kanzaki, H, Matsumura, H, Mitsuoka, C, Tamiru, M, Innan, H, Cano, L, Kamoun, S, Terauchi, R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30: pp. 174-178 CrossRef
    24. Huang, X, Zhao, Y, Wei, X, Li, C, Wang, A, Zhao, Q, Li, W, Guo, Y, Deng, L, Zhu, C, Fan, D, Lu, Y, Weng, Q, Liu, K, Zhou, T, Jing, Y, Si, L, Dong, G, Huang, T, Lu, T, Feng, Q, Qian, Q, Li, J, Han, B (2011) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44: pp. 32-39 CrossRef
    25. Yamamoto, E, Yonemaru, J-i, Yamamoto, T, Yano, M (2012) OGRO: The Overview of functionally characterized Genes in Rice Online database. Rice 5: pp. 26 433-5-26" target="_blank" title="It opens in new window">CrossRef
    26. Yonemaru, J-i, Yamamoto, T, Fukuoka, S, Uga, Y, Hori, K, Yano, M (2010) Q-TARO: QTL Annotation Rice Online database. Rice 3: pp. 194-203 4-010-9041-z" target="_blank" title="It opens in new window">CrossRef
    27. Bryan, GT, Wu, KS, Farrall, L, Jia, Y, Hershey, HP, McAdams, SA, Faulk, KN, Donaldson, GK, Tarchini, R, Valent, B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12: pp. 2033-2046 CrossRef
    28. Lu, L, Yan, W, Xue, W, Shao, D, Xing, Y (2012) Evolution and association analysis of Ghd7 in rice. PLoS One 7: pp. e34021 4021" target="_blank" title="It opens in new window">CrossRef
    29. Sun, J, Liu, D, Wang, JY, Ma, DR, Tang, L, Gao, H, Xu, ZJ, Chen, WF (2012) The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China. Theor Appl Genet 125: pp. 1149-1157 CrossRef
    30. Khush, G (1995) Breaking the yield frontier of rice. GeoJournal 35: pp. 329-332 40" target="_blank" title="It opens in new window">CrossRef
    31. Wisser, RJ, Sun, Q, Hulbert, SH, Kresovich, S, Nelson, RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169: pp. 2277-2293 4/genetics.104.036327" target="_blank" title="It opens in new window">CrossRef
    32. Zhou, T, Wang, Y, Chen, JQ, Araki, H, Jing, Z, Jiang, K, Shen, J, Tian, D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271: pp. 402-415 438-004-0990-z" target="_blank" title="It opens in new window">CrossRef
    33. Marri, PR, Sarla, N, Reddy, LV, Siddiq, EA (2005) Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6: pp. 33 471-2156-6-33" target="_blank" title="It opens in new window">CrossRef
    34. Ishimaru, K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133: pp. 1083-1090 4/pp.103.027607" target="_blank" title="It opens in new window">CrossRef
    35. Zhuang, JY, Fan, YY, Wu, JL, Xia, YW, Zheng, KL (2001) Comparison of the detection of QTL for yield traits in different generations of a rice cross using two mapping approaches. Yi Chuan Xue Bao 28: pp. 458-464
    36. Kojima, Y, Ebana, K, Fukuoka, S, Nagamine, T, Kawase, M (2005) Development of an RFLP-based rice diversity research set of germplasm. Breed Sci 55: pp. 431-440 431" target="_blank" title="It opens in new window">CrossRef
    37. Ebana, K, Kojima, Y, Fukuoka, S, Nagamine, T, Kawase, M (2008) Development of mini core collection of Japanese rice landrace. Breed Sci 58: pp. 281-291 CrossRef
    38. Murray, MG, Thompson, WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: pp. 4321-4325 4321" target="_blank" title="It opens in new window">CrossRef
    39. Kawahara, Y, de la Bastide, M, Hamilton, J, Kanamori, H, McCombie, W, Ouyang, S, Schwartz, D, Tanaka, T, Wu, J, Zhou, S, Childs, K, Davidson, R, Lin, H, Quesada-Ocampo, L, Vaillancourt, B, Sakai, H, Lee, S, Kim, J, Numa, H, Itoh, T, Buell, C, Matsumoto, T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6: pp. 4 433-6-4" target="_blank" title="It opens in new window">CrossRef
    40. Sakai, H, Lee, SS, Tanaka, T, Numa, H, Kim, J, Kawahara, Y, Wakimoto, H, Yang, CC, Iwamoto, M, Abe, T, Yamada, Y, Muto, A, Inokuchi, H, Ikemura, T, Matsumoto, T, Sasaki, T, Itoh, T (2013) Rice Annotation Project Database (RAP-DB): An integrative and interactive database for rice genomics. Plant Cell Physiol 54: pp. e6 CrossRef
    41. Liu, K, Muse, SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: pp. 2128-2129 CrossRef
    42. Gao, H, Williamson, S, Bustamante, CD (2007) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176: pp. 1635-1651 4/genetics.107.072371" target="_blank" title="It opens in new window">CrossRef
    43. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-2739 CrossRef
    44. Tanabata, T, Shibaya, T, Hori, K, Ebana, K, Yano, M (2012) SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol 160: pp. 1871-1880 4/pp.112.205120" target="_blank" title="It opens in new window">CrossRef
    45. Bradbury, PJ, Zhang, Z, Kroon, DE, Casstevens, TM, Ramdoss, Y, Buckler, ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: pp. 2633-2635 CrossRef
    46. Li, H, Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: pp. 1754-1760 4" target="_blank" title="It opens in new window">CrossRef
    47. Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N, Marth, G, Abecasis, G, Durbin, R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25: pp. 2078-2079 CrossRef
    48. DePristo, MA, Banks, E, Poplin, R, Garimella, KV, Maguire, JR, Hartl, C, Philippakis, AA, del Angel, G, Rivas, MA, Hanna, M, McKenna, A, Fennell, TJ, Kernytsky, AM, Sivachenko, AY, Cibulskis, K, Gabriel, SB, Altshuler, D, Daly, MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: pp. 491-498 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background High-yielding cultivars of rice (Oryza sativa L.) have been developed in Japan from crosses between overseas indica and domestic japonica cultivars. Recently, next-generation sequencing technology and high-throughput genotyping systems have shown many single-nucleotide polymorphisms (SNPs) that are proving useful for detailed analysis of genome composition. These SNPs can be used in genome-wide association studies to detect candidate genome regions associated with economically important traits. In this study, we used a custom SNP set to identify introgressed chromosomal regions in a set of high-yielding Japanese rice cultivars, and we performed an association study to identify genome regions associated with yield. Results An informative set of 1152 SNPs was established by screening 14 high-yielding or primary ancestral cultivars for 5760 validated SNPs. Analysis of the population structure of high-yielding cultivars showed three genome types: japonica-type, indica-type and a mixture of the two. SNP allele frequencies showed several regions derived predominantly from one of the two parental genome types. Distinct regions skewed for the presence of parental alleles were observed on chromosomes 1, 2, 7, 8, 11 and 12 (indica) and on chromosomes 1, 2 and 6 (japonica). A possible relationship between these introgressed regions and six yield traits (blast susceptibility, heading date, length of unhusked seeds, number of panicles, surface area of unhusked seeds and 1000-grain weight) was detected in eight genome regions dominated by alleles of one parental origin. Two of these regions were near Ghd7, a heading date locus, and Pi-ta, a blast resistance locus. The allele types (i.e., japonica or indica) of significant SNPs coincided with those previously reported for candidate genes Ghd7 and Pi-ta. Conclusions Introgression breeding is an established strategy for the accumulation of QTLs and genes controlling high yield. Our custom SNP set is an effective tool for the identification of introgressed genome regions from a particular genetic background. This study demonstrates that changes in genome structure occurred during artificial selection for high yield, and provides information on several genomic regions associated with yield performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700