Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins
详细信息    查看全文
  • 作者:Marina A Pombo (1)
    Yi Zheng (1)
    Noe Fernandez-Pozo (1)
    Diane M Dunham (1)
    Zhangjun Fei (1)
    Gregory B Martin (1) (2)

    1. Boyce Thompson Institute for Plant Research
    ; 533 Tower Road ; Ithaca ; NY ; 14853-1801 ; USA
    2. Section of Plant Pathology and Plant-Microbe Biology
    ; School of Integrative Plant Science ; Cornell University ; Ithaca ; NY ; 14853-1801 ; USA
  • 刊名:Genome Biology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:15
  • 期:10
  • 全文大小:3,129 KB
  • 参考文献:1. Schwessinger, B, Ronald, PC (2012) Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol 63: pp. 451-482 plant-042811-105518" target="_blank" title="It opens in new window">CrossRef
    2. Boller, T, He, SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324: pp. 742-744 CrossRef
    3. Dodds, PN, Rathjen, JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11: pp. 539-548 CrossRef
    4. Segonzac, C, Zipfel, C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14: pp. 54-61 CrossRef
    5. Nguyen, HP, Chakravarthy, S, Vel谩squez, AC, McLane, HS, Zeng, L, Park, D-W, Collmer, A, Martin, GB (2010) Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Mol Plant Microbe Interact 23: pp. 991-999 CrossRef
    6. Maekawa, T, Kufer, TA, Schulze-Lefert, P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12: pp. 817-826 CrossRef
    7. Jones, JD, Dangl, JL (2006) The plant immune system. Nature 444: pp. 323-329 CrossRef
    8. Pedley, KF, Martin, GB (2003) Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu Rev Phytopathol 41: pp. 215-243 CrossRef
    9. Oh, CS, Martin, GB (2011) Effector-triggered immunity mediated by the Pto kinase. Trends Plant Sci 16: pp. 132-140 plants.2010.11.001" target="_blank" title="It opens in new window">CrossRef
    10. Gomez-Gomez, L, Boller, T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5: pp. 1003-1011 CrossRef
    11. Zeng, W, He, SY (2010) A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol 153: pp. 1188-1198 CrossRef
    12. Clarke, CR, Chinchilla, D, Hind, SR, Taguchi, F, Miki, R, Ichinose, Y, Martin, GB, Leman, S, Felix, G, Vinatzer, BA (2013) Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytol 200: pp. 847-860 CrossRef
    13. Rosli, H, Zheng, Y, Pombo, M, Zhong, S, Bombarely, A, Fei, Z, Collmer, A, Martin, G (2013) Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome Biol 14: pp. R139 CrossRef
    14. Martin, GB Suppression and activation of the plant immune system by Pseudomonas syringae effectors AvrPto and AvrPtoB. In: Martin, F, Kamoun, S eds. (2012) Effectors in Plant-Microbe Interactions. Wiley-Blackwell, John Wiley and Sons, London, pp. 123-154
    15. Cunnac, S, Chakravarthy, S, Kvitko, BH, Russell, AB, Martin, GB, Collmer, A (2011) Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proc Natl Acad Sci U S A 108: pp. 2975-2980 CrossRef
    16. Martin, GB, Brommonschenkel, SH, Chunwongse, J, Frary, A, Ganal, MW, Spivey, R, Wu, T, Earle, ED, Tanksley, SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: pp. 1432-1436 CrossRef
    17. Tang, X, Frederick, RD, Zhou, J, Halterman, DA, Jia, Y, Martin, GB (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274: pp. 2060-2063 CrossRef
    18. Salmeron, JM, Oldroyd, GED, Rommens, CMT, Scofield, SR, Kim, HS, Lavelle, DT, Dahlbeck, D, Staskawicz, BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86: pp. 123-133 CrossRef
    19. Mysore, KS, Crasta, OR, Tuori, RP, Folkerts, O, Swirsky, PB, Martin, GB (2002) Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J 32: pp. 299-315 CrossRef
    20. Tsuda, K, Katagiri, F (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13: pp. 459-465 CrossRef
    21. Katagiri, F, Tsuda, K (2010) Understanding the plant immune system. Mol Plant Microbe Interact 23: pp. 1531-1536 CrossRef
    22. Tao, Y, Xie, Z, Chen, W, Glazebrook, J, Chang, HS, Han, B, Zhu, T, Zou, G, Katagiri, F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15: pp. 317-330 CrossRef
    23. Navarro, L, Zipfel, C, Rowland, O, Keller, I, Robatzek, S, Boller, T, Jones, JD (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135: pp. 1113-1128 CrossRef
    24. Tsuda, K, Sato, M, Glazebrook, J, Cohen, JD, Katagiri, F (2008) Interplay between MAMP-triggered and SA-mediated defense responses. Plant J 53: pp. 763-775 CrossRef
    25. Tsuda, K, Sato, M, Stoddard, T, Glazebrook, J, Katagiri, F (2009) Network properties of robust immunity in plants. PLoS Genet 5: pp. e1000772 CrossRef
    26. Wang, Z, Gerstein, M, Snyder, M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev 10: pp. 57-63 CrossRef
    27. Ansorge, WJ (2009) Next generation DNA sequencing techniques. Nat Biotechnol 25: pp. 195-203
    28. Haas, BJ, Zody, MC (2010) Advancing RNA-Seq analysis. Nat Biotechnol 28: pp. 421-423 CrossRef
    29. Wang, L, Li, P, Brutnell, TP (2010) Exploring plant transcriptome using ultra high-throughput sequencing. Brief Funct Genomics 9: pp. 118-128 CrossRef
    30. Salmeron, JM, Barker, SJ, Carland, FM, Mehta, AY, Staskawicz, BJ (1994) Tomato mutants altered in bacterial disease resistance provide evidence for a new controlling pathogen recognition. Plant Cell 6: pp. 511-520 CrossRef
    31. iTAK - Plant Transcription factor and Protein Kinase Identifier and Classifier [http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi]
    32. Pozo, O, Pedley, KF, Martin, GB (2004) MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23: pp. 3072-3082 CrossRef
    33. Ekengren, SK, Liu, Y, Schiff, M, Dinesh-Kumar, SP, Martin, GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36: pp. 905-917 CrossRef
    34. Wulf, J, Pascuzzi, PE, Fahmy, A, Martin, GB, Nicholson, LK (2004) The solution structure of type III effector protein AvrPto reveals conformational and dynamic features important for plant pathogenesis. Structure 12: pp. 1257-1268 CrossRef
    35. Wei, CF, Kvitko, BH, Shimizu, R, Crabill, E, Alfano, JR, Lin, NC, Martin, GB, Huang, HC, Collmer, A (2007) A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51: pp. 32-46 CrossRef
    36. Rosebrock, TR, Zeng, L, Brady, JJ, Abramovitch, RB, Xiao, F, Martin, GB (2007) A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448: pp. 370-374 CrossRef
    37. Bendahmane, A, Querci, M, Kanyuka, K, Baulcombe, DC (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21: pp. 73-81 CrossRef
    38. Rentel, MC, Leonelli, L, Dahlbeck, D, Zhao, B, Staskawicz, BJ (2008) Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc Natl Acad Sci U S A 105: pp. 1091-1096 CrossRef
    39. Sacco, MA, Koropacka, K, Grenier, E, Jaubert, MJ, Blanchard, A, Goverse, A, Smant, G, Moffett, P (2009) The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death. PLoS Pathog 5: pp. e1000564 CrossRef
    40. Lacomme, C, Santa Cruz, S (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci U S A 96: pp. 7956-7961 CrossRef
    41. Xin, X-F, He, SY (2013) Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol 51: pp. 473-498 CrossRef
    42. Mur, LAJ, Kenton, P, Lloyd, AJ, Ougham, H, Prats, E (2008) The hypersensitive response; the centenary is upon us but how much do we know?. J Exp Bot 59: pp. 501-520 CrossRef
    43. Coll, NS, Epple, P, Dangl, JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18: pp. 1247-1256 CrossRef
    44. Kang, L, Li, J, Zhao, T, Xiao, F, Tang, X, Thilmony, R, He, S, Zhou, J-M (2003) Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc Natl Acad Sci U S A 100: pp. 3519-3524 CrossRef
    45. Li, X, Lin, H, Zhang, W, Zou, Y, Zhang, J, Tang, X, Zhou, J-M (2005) Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae pv. tomato effectors. Proc Natl Acad Sci U S A 102: pp. 12990-12995 CrossRef
    46. He, P, Shan, L, Lin, NC, Martin, GB, Kemmerling, B, Nurnberger, T, Sheen, J (2006) Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125: pp. 563-575 CrossRef
    47. Schulze, S, Kay, S, Buttner, D, Egler, M, Eschen-Lippold, L, Hause, G, Kruger, A, Lee, J, Muller, O, Scheel, D, Szczesny, R, Thieme, F, Bonas, U (2012) Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytol 195: pp. 894-911 CrossRef
    48. Kim, JG, Li, X, Roden, JA, Taylor, KW, Aakre, CD, Su, B, Lalonde, S, Kirik, A, Chen, Y, Baranage, G, McLane, H, Martin, GB, Mudgett, MB (2009) Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell 21: pp. 1305-1323 CrossRef
    49. Zheng, X, McLellan, H, Fraiture, M, Liu, X, Boevink, PC, Gilroy, EM, Chen, Y, Kandel, K, Sessa, G, Birch, PR, Brunner, F (2014) Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLoS Pathog 10: pp. e1004057 CrossRef
    50. Ichimura, K, Shinozaki, K, Tena, G, Sheen, J, Henry, Y, Champion, A, Kreis, M, Zhang, SQ, Hirt, H, Wilson, C, Heberle-Bors, E, Ellis, BE, Morris, PC, Innes, RW, Ecker, JR, Scheel, D, Klessig, DF, Machida, Y, Mundy, J, Ohashi, Y, Walker, JC, Grp, M (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7: pp. 301-308 CrossRef
    51. Martin, GB, Bogdanove, AJ, Sessa, G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54: pp. 23-61 plant.54.031902.135035" target="_blank" title="It opens in new window">CrossRef
    52. Bernoux, M, Ellis, JG, Dodds, PN (2011) New insights in plant immunity signaling activation. Curr Opin Plant Biol 14: pp. 512-518 CrossRef
    53. Jin, H, Liu, Y, Yang, KY, Kim, CY, Baker, B, Zhang, S (2003) Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J 33: pp. 719-731 CrossRef
    54. Oh, CS, Pedley, KF, Martin, GB (2010) Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK alpha. Plant Cell 22: pp. 260-272 CrossRef
    55. Cho, HS, Yoon, GM, Lee, SS, Kim, YA, Hwang, I, Choi, D, Pai, H-S (2001) A novel dual-specificity protein kinase targeted to the chloroplast in tobacco. FEBS Lett 497: pp. 124-130 CrossRef
    56. Rudrabhatla, P, Reddy, MM, Rajasekharan, R (2006) Genome-wide analysis and experimentation of plant serine/ threonine/tyrosine-specific protein kinases. Plant Mol Biol 60: pp. 293-319 CrossRef
    57. Macho, AP, Schwessinger, B, Ntoukakis, V, Brutus, A, Segonzac, C, Roy, S, Kadota, Y, Oh, MH, Sklenar, J, Derbyshire, P, Lozano-Duran, R, Malinovsky, FG, Monaghan, J, Menke, FL, Huber, SC, He, SY, Zipfel, C (2014) A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. Science 343: pp. 1509-1512 CrossRef
    58. Bayer, RG, Stael, S, Rocha, AG, Mair, A, Vothknecht, UC, Teige, M (2012) Chloroplast-localized protein kinases: a step forward towards a complete inventory. J Exp Bot 63: pp. 1713-1723 CrossRef
    59. Zhong, S, Joung, JG, Zheng, Y, Chen, YR, Liu, B, Shao, Y, Xiang, JZ, Fei, Z, Giovannoni, JJ (2011) High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb Protoc 2011: pp. 940-949 CrossRef
    60. Tomato Functional Genomics Database [http://ted.bti.cornell.edu/]
    61. VIGS Tool [http://solgenomics.net/tools/vigs]
    62. Untergasser, A, Cutcutache, I, Koressaar, T, Ye, J, Faircloth, BC, Remm, M, Rozen, SG (2012) Primer3鈥搉ew capabilities and interfaces. Nucleic Acids Res 40: pp. e115 CrossRef
    63. Liu, Y, Schiff, M, Dinesh-Kumar, SP (2002) Virus-induced gene silencing in tomato. Plant J 31: pp. 777-786 CrossRef
    64. Velasquez, AC, Chakravarthy, S, Martin, GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 28: pp. 1292-1299
    65. Liu, D, Shi, L, Han, C, Yu, J, Li, D, Zhang, Y (2012) Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 7: pp. e46451 CrossRef
    66. Boyle, EI, Weng, S, Gollub, J, Jin, H, Botstein, D, Cherry, JM, Sherlock, G (2004) GO::TermFinder鈥搊pen source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20: pp. 3710-3715 formatics/bth456" target="_blank" title="It opens in new window">CrossRef
    67. Gouy, M, Guindon, S, Gascuel, O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: pp. 221-224 CrossRef
    68. FigTree [http://tree.bio.ed.ac.uk/software/figtree]
    69. Consortium, TU (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42: pp. D191-D198 CrossRef
    70. Stoesser, G, Baker, W, Broek, A, Camon, E, Garcia-Pastor, M, Kanz, C, Kulikova, T, Lombard, V, Lopez, R, Parkinson, H, Redaschi, N, Sterk, P, Stoehr, P, Tuli, MA (2001) The EMBL nucleotide sequence database. Nucleic Acids Res 29: pp. 17-21 CrossRef
    71. PUBMED [http://www.ncbi.nlm.nih.gov/pubmed/]
    72. Camacho, C, Coulouris, G, Avagyan, V, Ma, N, Papadopoulos, J, Bealer, K, Madden, T (2009) BLAST+: architecture and applications. BMC Bioinformatics 10: pp. 421 CrossRef
    73. Goto, N, Prins, P, Nakao, M, Bonnal, R, Aerts, J, Katayama, T (2010) BioRuby: bioinformatics software for the Ruby programming language. Bioinformatics 26: pp. 2617-2619 formatics/btq475" target="_blank" title="It opens in new window">CrossRef
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Background Plants have two related immune systems to defend themselves against pathogen attack. Initially, pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. Results We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Conclusions Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700