solGS: a web-based tool for genomic selection
详细信息    查看全文
  • 作者:Isaak Y Tecle (1)
    Jeremy D Edwards (1)
    Naama Menda (1)
    Chiedozie Egesi (2)
    Ismail Y Rabbi (3)
    Peter Kulakow (3)
    Robert Kawuki (4)
    Jean-Luc Jannink (5)
    Lukas A Mueller (1)

    1. Boyce Thompson Institute for Plant Research
    ; Cornell University ; Ithaca ; NY ; USA
    2. National Root Crops Research Institute (NRCRI)
    ; Umudike ; Nigeria
    3. International Institute of Tropical Agriculture (IITA)
    ; Ibadan ; Oyo State ; Nigeria
    4. National Crops Resources Research Institute
    ; Kampala ; Uganda
    5. USDA-ARS
    ; Robert W. Holley Center for Agriculture and Health ; Cornell University ; Ithaca ; NY ; USA
  • 关键词:Genomic selection ; RR ; BLUP ; Bioinformatics ; Database ; Web ; based tool
  • 刊名:BMC Bioinformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,118 KB
  • 参考文献:1. Meuwissen, TH, Hayes, BJ, Goddard, ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: pp. 1819-1829
    2. Goddard, ME, Hayes, BJ (2007) Genomic selection. J Anim Breed Genet 124: pp. 323-330 CrossRef
    3. Nakaya, A, Isobe, SN (2012) Will genomic selection be a practical method for plant breeding?. Ann Bot 110: pp. 1303-1316 CrossRef
    4. Jannink, JL, Lorenz, AJ, Iwata, H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9: pp. 166-177 CrossRef
    5. Elshire, RJ, Glaubitz, JC, Sun, Q, Poland, JA, Kawamoto, K, Buckler, ES, Mitchell, SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6: pp. e19379 CrossRef
    6. Heffner, EL, Sorrells, ME, Jannink, J (2009) Genomic selection for crop improvement. Crop Sci 49: pp. 1-12 CrossRef
    7. Ornella, L, Perez, P, Tapia, E, Gonzalez-Camacho, JM, Burgueno, J, Zhang, X, Singh, S, Vicente, FS, Bonnett, D, Dreisigacker, S, Singh, R, Long, N, Crossa, J (2014) Genomic-enabled prediction with classification algorithms. Heredity (Edinb) 112: pp. 616-626 CrossRef
    8. Endelman, JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4: pp. 250-255 plantgenome2011.08.0024" target="_blank" title="It opens in new window">CrossRef
    9. Crossa, J, Beyene, Y, Kassa, S, Perez, P, Hickey, JM, Chen, C, Los Campos, G, Burgueno, J, Windhausen, VS, Buckler, E, Jannink, JL, Lopez Cruz, MA, Babu, R (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 (Bethesda) 3: pp. 1903-1926 CrossRef
    10. Hayes, BJ, Bowman, PJ, Chamberlain, AJ, Goddard, ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92: pp. 433-443 CrossRef
    11. VanRaden, PM, Tassell, CP, Wiggans, GR, Sonstegard, TS, Schnabel, RD, Taylor, JF, Schenkel, FS (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92: pp. 16-24 CrossRef
    12. Poland, J, Endelman, J, Dawson, J, Rutkoski, J, Wu, S, Manes, Y, Dreisigacker, S, Crossa, J, S谩nchez-Villeda, H, Sorrells, M, Jannink, J (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Crop Sci 5: pp. 103-113
    13. Wurschum, T, Reif, JC, Kraft, T, Janssen, G, Zhao, Y (2013) Genomic selection in sugar beet breeding populations. BMC Genet 14: pp. 85-2156-14-85
    14. Ly, D, Hamblin, M, Rabbi, I, Melaku, G, Bakare, M, Gauch, HGJ, Okechukwu, R, Dixon, AGO, Kulakow, P, Jannink, J (2013) Relatedness and genotype鈥壝椻€塭nvironment interaction affect prediction accuracies in genomic selection: a study in cassava. Crop Sci 53: pp. 1312-1325 CrossRef
    15. Jung, S, Menda, N, Redmond, S, Buels, RM, Friesen, M, Bendana, Y, Sanderson, LA, Lapp, H, Lee, T, MacCallum, B, Bett, KE, Cain, S, Clements, D, Mueller, LA, Main, D (2011) The Chado Natural Diversity module: a new generic database schema for large-scale phenotyping and genotyping data. Database (Oxford) 2011: pp. bar051 CrossRef
    R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
    16. Pinheiro, J, Bates, D, DebRoy, S, Sarkar, D (2014) R Core Team: nlme: Linear and Nonlinear Mixed Effects Models.
    17. Diment, K, Trout, MS (2009) The Definitive Guide to Catalyst: Writing Extensible, Scalable, and Maintainable Perl-Based Web Applications. Apress, Berkeley, CA, USA CrossRef
    18. Falconer, DS, Mackay, TF (1996) Introduction to Quantitative Genetics. Longman Scientific & Technical, New York
    19. Park, T, Casella, G (2008) The Bayesian Lasso. J Am Stat Assoc 103: pp. 681-686 CrossRef
    20. Lorenz, AJ, Chao, S, Asoro, FG, Heffner, EL, Hayashi, T, Iwata, H, Smith, KP, Sorrells, ME, Jannink, J (2011) Genomic selection in plant breeding: knowledge and propects. Adv Agron 110: pp. 77-123 CrossRef
    21. Jia, Y, Jannink, JL (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192: pp. 1513-1522 CrossRef
    22. Wiggans, GR, VanRaden, PM, Bacheller, LR, Tooker, ME, Hutchison, JL, Cooper, TA, Sonstegard, TS (2010) Selection and management of DNA markers for use in genomic evaluation. J Dairy Sci 93: pp. 2287-2292 CrossRef
    23. / ISMU 2.0: A Pipeline for Genomic Selection. [https://pag.confex.com/pag/xxii/webprogram/Paper11074.html]
    24. Bombarely, A, Menda, N, Tecle, IY, Buels, RM, Strickler, S, Fischer-York, T, Pujar, A, Leto, J, Gosselin, J, Mueller, LA (2011) The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res 39: pp. D1149-D1155 CrossRef
    25. Jung, S, Staton, M, Lee, T, Blenda, A, Svancara, R, Abbott, A, Main, D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36: pp. D1034-D1040
    26. / The Cool Season Food Legume Database: An Integrated Resource for Basic, Translational and Applied Research. [https://pag.confex.com/pag/xxii/webprogram/Paper11249.html]
    27. Megy, K, Emrich, SJ, Lawson, D, Campbell, D, Dialynas, E, Hughes, DS, Koscielny, G, Louis, C, Maccallum, RM, Redmond, SN, Sheehan, A, Topalis, P, Wilson, D (2012) VectorBase Consortium: VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Res 40: pp. D729-D734 CrossRef
    28. Menda, N, Buels, RM, Tecle, I, Mueller, LA (2008) A community-based annotation framework for linking solanaceae genomes with phenomes. Plant Physiol 147: pp. 1788-1799 CrossRef
    29. Tecle, IY, Menda, N, Buels, RM, van der Knaap, E, Mueller, LA (2010) solQTL: a tool for QTL analysis, visualization and linking to genomes at SGN database. BMC Bioinformatics 11: pp. 525-2105 CrossRef
  • 刊物主题:Bioinformatics; Microarrays; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Combinatorial Libraries; Algorithms;
  • 出版者:BioMed Central
  • ISSN:1471-2105
文摘
Background Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders. Results We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs. Conclusions solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700