Analysis of wild-species introgressions in tomato inbreds uncovers ancestral origins
详细信息    查看全文
  • 作者:Naama Menda (1)
    Susan R Strickler (1)
    Jeremy D Edwards (1)
    Aureliano Bombarely (1)
    Diane M Dunham (1)
    Gregory B Martin (1) (2)
    Luis Mejia (3)
    Samuel F Hutton (4)
    Michael J Havey (5)
    Douglas P Maxwell (6)
    Lukas A Mueller (1)

    1. Boyce Thompson Institute for Plant Research
    ; 533 Tower Rd ; Ithaca ; NY ; 14853 ; USA
    2. Department of Plant Pathology and Plant-Microbe Biology
    ; Cornell University ; Ithaca ; NY ; 14853 ; USA
    3. Facultad de Agronom铆a
    ; Universidad de San Carlos de Guatemala ; Guatemala City ; 01012 ; Guatemala
    4. University of Florida
    ; Gulf Coast Research and Education Center ; 14625 CR 672 ; Wimauma ; FL ; 33598 ; USA
    5. USDA-ARS Department of Horticulture
    ; University of Wisconsin ; 1575 Linden Drive ; Madison ; WI ; 53706 ; USA
    6. Department of Plant Pathology
    ; University of Wisconsin-Madison ; Madison ; WI ; 53706 ; USA
  • 关键词:Solanum lycopersicum ; Solanum pimpinellifolium ; Solanum chilense ; Genomic introgressions ; Genome sequencing ; Disease resistance ; Single nucleotide polymorphism ; Wild species ; Domestication ; Phylogenetics
  • 刊名:BMC Plant Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:2,803 KB
  • 参考文献:1. Giovannoni, JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10: pp. 283-289 CrossRef
    2. Pedley, KF, Martin, GB (2003) Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu Rev Phytopathol 41: pp. 215-243 CrossRef
    3. Scofield, SR, Tobias, CM, Rathjen, JP, Chang, JH, Lavelle, DT, Michelmore, RW, Staskawicz, BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274: pp. 2063-2065 CrossRef
    4. Blanca, J, Canizares, J, Cordero, L, Pascual, L, Jose Diez, M, Nuez, F (2012) Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One 7: pp. e48198 CrossRef
    5. Sim, S, Robbins, M, Deynze, A, Michel, A, Francis, D (2010) Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106: pp. 927-935 CrossRef
    6. Tanksley, SD, McCouch, SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: pp. 1063-1066 CrossRef
    7. Foolad MR: Genome mapping and molecular breeding of tomato. / Int J Plant Genomics 2007, doi:10.1155/2007/64358.
    8. Alexander LJ: Leaf mold resistance in the tomato. / Ohio Agr Exp Sta Bul 1934, 539.
    9. Allan, EW (1919) United States Department of Agriculture: States Relations Service Office of Experiment Stations Experiment Station Record.
    10. Grandillo, S, Chetelat, R, Knapp, S, Spooner, D, Peralta, I, Cammareri, M, Perez, O, Termolino, P, Tripodi, P, Chiusano, ML, Ercolano, MR, Frusciante, L, Monti, L, Pignone, D Solanum sect. Lycopersicon. In: Chittaranjan, K eds. (2011) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Heidelberg/Dordrecht/London/New York, pp. 129-215 CrossRef
    11. Ji, Y, Scott, JW, Hanson, P, Graham, E, Maxwell, DP Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek, H eds. (2007) Tomato Yellow Leaf Curl Virus Disease. Springer, Netherlands, pp. 343-362 CrossRef
    12. Zamir, D, Ekstein-Michelson, I, Zakay, Y, Navot, N, Zeidan, M, Sarfatti, M, Eshed, Y, Harel, E, Pleban, T, van-Oss, H, Kedar, N, Rabinowitch, HD, Czosnek, H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1. Theor Appl Genet 88: pp. 141-146 CrossRef
    13. Barham, WS, Winstead, NN (1957) Inheritance of resistance to root-knot nematodes in tomatoes. Proc Am Soc of Horticultural Sci 69: pp. 372-377
    14. Lanfermeijer, FC, Warmink, J, Hille, J (2005) The products of the broken Tm-2 and the durable Tm-22 resistance genes from tomato differ in four amino acids. J Exp Bot 56: pp. 2925-2933 CrossRef
    15. Seah, S, Yaghoobi, J, Rossi, M, Gleason, C, Williamson, V (2004) The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theor Appl Genet 108: pp. 1635-1642 CrossRef
    16. Hanson, P, Green, S, Kuo, G (2006) Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop Rep 56: pp. 17-18
    17. Parniske, M, Wulff, BB, Bonnema, G, Thomas, CM, Jones, DA, Jones, JD (1999) Homologues of the Cf-9 disease resistance gene (Hcr9s) are present at multiple loci on the short arm of tomato chromosome 1. Mol Plant-Microbe Interact 12: pp. 93-102 CrossRef
    18. Chunwongse, J, Chunwongse, C, Black, L, Hanson, P (2002) Molecular mapping of the Ph-3 gene for late blight resistance in tomato. J Horticultural Sci Biotechnol 77: pp. 281-286
    19. Anbinder, I, Reuveni, M, Azari, R, Paran, I, Nahon, S, Shlomo, H, Chen, L, Lapidot, M, Levin, I (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119: pp. 519-530 CrossRef
    20. Moriones, E, Navas-Castillo, J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71: pp. 123-134 CrossRef
    21. Verlaan, MG, Hutton, SF, Ibrahem, RM, Kormelink, R, Visser, RG, Scott, JW, Edwards, JD, Bai, Y (2013) The Tomato Yellow Leaf Curl Virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA鈥揹ependent RNA polymerases. PLoS Genet 9: pp. e1003399 CrossRef
    22. Polston JE, Lapidot M: Management of tomato yellow leaf curl virus: US and Israel perspectives. In / Tomato Yellow Leaf Curl Virus Disease. Edited by Czosnek H. Springer; 2007:251鈥?62
    23. Leinonen, R, Sugawara, H, Shumway, M (2011) The sequence read archive. Nucleic Acids Res 39: pp. D19-D21 CrossRef
    The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: pp. 635-641 CrossRef
    24. Huang, X, Lu, T, Han, B (2013) Resequencing rice genomes: an emerging new era of rice genomics. Trends Genet 29: pp. 225-232 CrossRef
    25. Xiao, H, Jiang, N, Schaffner, E, Stockinger, EJ, Knaap, E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319: pp. 1527-1530 CrossRef
    26. Martin, GB, Brommonschenkel, SH, Chunwongse, J, Frary, A, Ganal, MW, Spivey, R, Wu, T, Earle, ED, Tanksley, SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: pp. 1432-1436 CrossRef
    27. Hajjar, R, Hodgkin, T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20聽years. Euphytica 156: pp. 1-13 CrossRef
    28. Tanksley, SD, Ganal, MW, Prince, JP, Vicente, MC, Bonierbale, MW, Broun, P, Fulton, TM, Giovannoni, JJ, Grandillo, S, Martin, GB (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132: pp. 1141-1160
    29. Labate, JA, Robertson, LD (2012) Evidence of cryptic introgression in tomato (Solanum lycopersicum L.) based on wild tomato species alleles. BMC Plant Biol 12: pp. 133 CrossRef
    30. Viquez-Zamora, M, Vosman, B, Geest, H, Bovy, A, Visser, RG, Finkers, R, Heusden, AW (2013) Tomato breeding in the genomics era: insights from a SNP array. BMC Genomics 14: pp. 354 CrossRef
    31. Henry, RJ (2012) Next-generation sequencing for understanding and accelerating crop domestication. Brief Funct Genomics 11: pp. 51-56 CrossRef
    32. Blair, MW, Cort茅s, AJ, Penmetsa, RV, Farmer, A, Carrasquilla-Garcia, N, Cook, DR (2013) A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.). Theor Appl Genet 126: pp. 535-548 CrossRef
    33. Esteras, C, Formisano, G, Roig, C, D铆az, A, Blanca, J, Garcia-Mas, J, G贸mez-Guillam贸n, ML, L贸pez-Ses茅, AI, L谩zaro, A, Monforte, AJ (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126: pp. 1285-1303 CrossRef
    34. Robbins, MD, Sim, S, Yang, W, Deynze, A, Knaap, E, Joobeur, T, Francis, DM (2011) Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. J Exp Bot 62: pp. 1831-1845 CrossRef
    35. Sim, SC, Deynze, A, Stoffel, K, Douches, DS, Zarka, D, Ganal, MW, Chetelat, RT, Hutton, SF, Scott, JW, Gardner, RG, Panthee, DR, Mutschler, M, Myers, JR, Francis, DM (2012) High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS One 7: pp. e45520 CrossRef
    36. Strickler, SR, Bombarely, A, Munkvold, JD, Menda, N, Martin, GB, Mueller, LA (2014) Comparative genomics and phylogenetic discordance of cultivated tomato and close wild relatives. Peer J Pre Prints 2: pp. e377v1
    37. Causse, M, Desplat, N, Pascual, L, Paslier, MC, Sauvage, C, Bauchet, G, Berard, A, Bounon, R, Tchoumakov, M, Brunel, D, Bouchet, JP (2013) Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics 14: pp. 791 CrossRef
    38. Shirasawa, K, Fukuoka, H, Matsunaga, H, Kobayashi, Y, Kobayashi, I, Hirakawa, H, Isobe, S, Tabata, S (2013) Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res 20: pp. 593-603 CrossRef
    39. Mej铆a, L, Garcia, BE, Fulladolsa, AC, S谩nchez-P茅rz, A, Havey, MJ, Teni, R, Maxwell, DP (2009) Effetiveness of the Ty-3 introgression for conferring resistance in recombinant inbred lines of tomato to bipartite begomoviruses in Guatemala. Tomato Genet Coop Rep 59: pp. 42-47
    40. Mej铆a, L, Teni, R, Vidavski, F, Czosnek, H, Lapidot, M, Nakhla, M, Maxwell, D (2004) Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. Acta Hort 695: pp. 251-256
    41. Vidavsky, F, Czosnek, H (1998) Tomato breeding lines resistant and tolerant to tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology 88: pp. 910-914 CrossRef
    42. Scott, JW, Schuster, DJ (2007) Gc9, Gc171, and Gc173 begomovirus resistant inbreds. Tom Gen Coop Rept 57: pp. 45-46
    43. Ozminkowski, R (2004) Pedigree of variety Heinz 1706. Report Tomato Genet Cooper 54: pp. 26
    44. Sim, S, Durstewitz, G, Plieske, J, Wieseke, R, Ganal, MW, Deynze, A, Hamilton, JP, Buell, CR, Causse, M, Wijeratne, S, Francis, DM (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7: pp. e40563 CrossRef
    45. Finkers, R, Heusden, S (2013) The 150+ tomato genome (re-)sequence project; lessons learned and potential applications. Tomato Breeder鈥檚 Roundtable, Chaing Mai, Thailand
    46. Ji, Y, Salus, M, Betteray, B, Smeets, J, Jensen, K, Martin, C, Mejia, L, Scott, J, Havey, M, Maxwell, D (2008) Co-dominant SCAR markers for detection of the Ty-3 and Ty-3a loci from Solanum chilense at 25聽cM of chromosome 6 of tomato. Tomato Genet Cooper 57: pp. 25-29
    47. Ji, Y, Schuster, DJ, Scott, JW (2007) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20: pp. 271-284 CrossRef
    48. Garcia, BE, Mejia, L, Melgar, S, Teni, R, Sanchez-Perez, A, Barillas, AC, Montes, L, Keuler, NS, Salus, MS, Havey, MJ, Maxwell, DP (2008) Effectiveness of the Ty-3 introgression for conferring resistance in F3 families of tomato to bipartite begomoviruses in Guatemala. Tomato Genet Coop Rep 58: pp. 22-28
    49. Ji, Y, Scott, JW, Maxwell, DP, Schuster, DJ (2008) Ty-4, a tomato yellow leaf curl virus resistance gene on chromosome 3. Tomato Genet Coop Rep 58: pp. 29-31
    50. Doyle, JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: pp. 11-15
    51. Bombarely, A, Rosli, HG, Vrebalov, J, Moffett, P, Mueller, LA, Martin, GB (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact 25: pp. 1523-1530 CrossRef
    52. Li, H, Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: pp. 1754-1760 formatics/btp324" target="_blank" title="It opens in new window">CrossRef
    53. Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N, Marth, G, Abecasis, G, Durbin, R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25: pp. 2078-2079 formatics/btp352" target="_blank" title="It opens in new window">CrossRef
    54. Li, R, Li, Y, Kristiansen, K, Wang, J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24: pp. 713-714 formatics/btn025" target="_blank" title="It opens in new window">CrossRef
    55. Koboldt, DC, Zhang, Q, Larson, DE, Shen, D, McLellan, MD, Lin, L, Miller, CA, Mardis, ER, Ding, L, Wilson, RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22: pp. 568-576 CrossRef
    56. JMP庐, Version 11.2. SAS Institute Inc., Cary, NC, 1989鈥?007.
    57. RStudio Team: RStudio: Integrated Development for R. Boston, MA: RStudio, Inc.; 2012 [http://www.RStudio.com/ide]
    58. Larkin, MA, Blackshields, G, Brown, NP, Chenna, R, McGettigan, PA, McWilliam, H, Valentin, F, Wallace, IM, Wilm, A, Lopez, R, Thompson, JD, Gibson, TJ, Higgins, DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: pp. 2947-2948 formatics/btm404" target="_blank" title="It opens in new window">CrossRef
    59. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-2739 CrossRef
  • 刊物主题:Plant Sciences; Agriculture; Tree Biology;
  • 出版者:BioMed Central
  • ISSN:1471-2229
文摘
Background Decades of intensive tomato breeding using wild-species germplasm have resulted in the genomes of domesticated germplasm (Solanum lycopersicum) being intertwined with introgressions from their wild relatives. Comparative analysis of genomes among cultivated tomatoes and wild species that have contributed genetic variation can help identify desirable genes, such as those conferring disease resistance. The ability to identify introgression position, borders, and contents can reveal ancestral origins and facilitate harnessing of wild variation in crop breeding. Results Here we present the whole-genome sequences of two tomato inbreds, Gh13 and BTI-87, both carrying the begomovirus resistance locus Ty-3 introgressed from wild tomato species. Introgressions of different sizes on chromosome 6 of Gh13 and BTI-87, both corresponding to the Ty-3 region, were identified as from a source close to the wild species S. chilense. Other introgressions were identified throughout the genomes of the inbreds and showed major differences in the breeding pedigrees of the two lines. Interestingly, additional large introgressions from the close tomato relative S. pimpinellifolium were identified in both lines. Some of the polymorphic regions were attributed to introgressions in the reference Heinz 1706 genome, indicating wild genome sequences in the reference tomato genome. Conclusions The methods developed in this work can be used to delineate genome introgressions, and subsequently contribute to development of molecular markers to aid phenotypic selection, fine mapping and discovery of candidate genes for important phenotypes, and for identification of novel variation for tomato improvement. These universal methods can easily be applied to other crop plants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700