Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation
详细信息    查看全文
  • 作者:Hideko Urushihara (1)
    Hidekazu Kuwayama (1)
    Kensuke Fukuhara (1)
    Takehiko Itoh (2)
    Hiroshi Kagoshima (3)
    Tadasu Shin-I (3)
    Atsushi Toyoda (3)
    Kazuyo Ohishi (3)
    Tateaki Taniguchi (4)
    Hideki Noguchi (2)
    Yoko Kuroki (5)
    Takashi Hata (1)
    Kyoko Uchi (1)
    Kurato Mohri (1)
    Jason S King (6)
    Robert H Insall (6)
    Yuji Kohara (3)
    Asao Fujiyama (3) (7)

    1. Faculty of Life and Environmental Sciences
    ; University of Tsukuba ; 1-1-1 Tennodai ; Tsukuba ; Ibaraki ; 305-8572 ; Japan
    2. Tokyo Institute of Technology
    ; Yokohama ; Japan
    3. National Institute of Genetics
    ; Mishima ; Japan
    4. Mitsubishi Research Institute
    ; Tokyo ; Japan
    5. RIKEN Advanced Science Institute
    ; Yokohama ; Japan
    6. Beatson Institute for Cancer Research
    ; Glasgow ; UK
    7. National Institute of Informatics
    ; Tokyo ; Japan
  • 关键词:Multicellular development ; Cell differentiation ; Signaling cascade ; Gene expression ; Evolution
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:2,268 KB
  • 参考文献:1. Wolpert L, Szathmary E. Multicellularity: evolution and the egg. Nature. 2002;420:745. CrossRef
    2. Bonner JT. Evolution of development in the cellular slime molds. Evol Devel. 2003;5:305鈥?3. CrossRef
    3. Kessin RH. Dictyostelium - Evolution, Cell Biology, and the Development of Multicellularity. Cambridge, UK: Cambridge Univ. Press; 2001. CrossRef
    4. Schaap P. Evolutionary crossroads in developmental biology: / Dictyostelium discoideum. Development. 2011;138:387鈥?6. CrossRef
    5. Cavender JC, Vadell EM. The genus / Acytostelium. Mycologia. 2000;92:992鈥?008. CrossRef
    6. Mohri K, Kiyota Y, Kuwayama H, Urushihara H. Temporal and non-permanent division of labor during sorocarp formation in the social amoeba / Acytostelium subglobosum. Dev Biol. 2013;375:202鈥?. CrossRef
    7. Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, Hagiwara H, et al. Molecular phylogeny and evolution of morphology in the social amoebas. Science. 2006;314:661鈥?. CrossRef
    8. Romeralo M, Skiba A, Gonzalez-Voyer A, Schilde C, Lawal H, Kedziora S, et al. Analysis of phenotypic evolution in Dictyostelia highlights developmental plasticity as a likely consequence of colonial multicellularity. Proc Biol Sci. 2013;280:20130976. CrossRef
    9. Swanson AR, Spiegel FW, Cavender JC. Taxonomy, slime molds, and the questions we ask. Mycologia. 2002;94:968鈥?9. CrossRef
    10. Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, et al. The genome of the social amoeba / Dictyostelium discoideum. Nature. 2005;435:43鈥?7. CrossRef
    11. Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, et al. Comparative genomics of the social amoebae / Dictyostelium discoideum and / Dictyostelium purpureum. Genome Biol. 2011;12:R20. CrossRef
    12. Heidel AJ, Lawal HM, Felder M, Schilde C, Helps NR, Tunggal B, et al. Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res. 2011;21:1882鈥?1. CrossRef
    13. Parikh A, Miranda ER, Katoh-Kurasawa M, Fuller D, Rot G, Zagar L, et al. Conserved developmental transcriptomes in evolutionarily divergent species. Genome Biol. 2010;11:R35. CrossRef
    14. Stand-alone tRNAscan-SE. [http://selab.janelia.org/software/]
    15. Long M, deSouza SJ, Rosenberg C, Gilbert W. Relationship between 鈥減roto-splice sites鈥?and intron phases: Evidence from dicodon analysis. Proc Natl Acad Sci U S A. 1998;95:219223.
    16. Chen F, Mackey AJ, Stoeckert CJ, Roos DS. OrthoMCL-DB querying a comprehensive multi-species collection of ortholog groups. Nucl Acids Res. 2006;34:D363鈥?. CrossRef
    17. OrthoMCL. [http://orthomcl.org/orthomcl/]
    18. Zucko J, Skunca N, Curk T, Zupan B, Long PF, Cullum J, et al. Polyketide synthase genes and the natural products potential of / Dictyostelium discoideum. Bioinformatics. 2007;23:2543鈥?. CrossRef
    19. Gokhale RS, Sankaranarayanan R, Mohanty D. Versatility of polyketide synthases in generating metabolic diversity. Curr Opin Struct Biol. 2007;17:736鈥?3. CrossRef
    20. Austin MB, Saito T, Bowman ME, Haydock S, Kato A, Moore BS, et al. Biosynthesis of / Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nat Chem Biol. 2006;2:494鈥?02. CrossRef
    21. Thompson CRL, Kay RR. The role of DIF-1 signaling in Dictyostelium development. Mol Cell. 2000;6:1509鈥?4. CrossRef
    22. Saito T, Kato A, Kay RR. DIF-1 induces the basal disc of the / Dictyostelium fruiting body. Dev Biol. 2008;317:444鈥?3. CrossRef
    23. Anjard C, Su Y, Loomis WF. The polyketide MPBD initiates the SDF-1 signaling cascade that coordinates terminal differentiation in / Dictyostelium. Eukaryot Cell. 2011;10:956鈥?3. CrossRef
    24. Narita TB, Koide K, Morita N, Saito T. / Dictyostelium hybrid polyketide synthase, SteelyA, produces 4-methyl-5-pentylbenzene-1,3-diol and induces spore maturation. FEMS Microbiol Lett. 2011;319:82鈥?. CrossRef
    25. Morrison A, Blanton RL, Grimson M, Fuchs M, Williams K, Williams J. Disruption of the gene encoding the EcmA, extracellular matrix protein of / Dictyostelium alters slug morphology. Dev Biol. 1994;163:457鈥?6. CrossRef
    26. Good JR, Cabral M, Sharma S, Yang J, Van Driessche N, Shaw CA, et al. TagA, a putative serine protease/ABC transporter of / Dictyostelium that is required for cell fate determination at the onset of development. Development. 2003;130:2953鈥?5. CrossRef
    27. Basu S, Fey P, Pandit Y, Dodson R, Kibbe WA, Chisholm RL. DictyBase 2013: integrating multiple Dictyostelid species. Nucleic Acids Res. 2013;41:D676鈥?83. CrossRef
    28. Soustre I, Letourneux Y, Karst F. Characterization of the / Saccharomyces cerevisiae RTA1 gene involved in 7-aminocholesterol resistance. Curr Genet. 1996;30:121鈥?. CrossRef
    29. Sillo A, Bloomfield G, Balest A, Balbo A, Pergolizzi B, Peracino B, et al. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in / Dictyostelium. BMC Genomics. 2008;9:291. CrossRef
    30. Yamada Y, Kay RR, Bloomfield G, Ross S, Ivens A, Williams JG. A new / Dictyostelium prestalk cell sub-type. Dev Biol. 2010;339:390鈥?. CrossRef
    31. Fukuzawa M. Control of prestalk-cell differentiation by transcription factors. Dev Growth Differ. 2011;53:538鈥?7. CrossRef
    32. Han Z, Firtel RA. The homeobox-containing gene Wariai regulates anterior-posterior patterning and cell-type homeostasis in / Dictyostelium. Development. 1998;125:313鈥?5.
    33. Yi L, Louise J, Simon M. Expansins and cell growth. Curr Opin Plant Biol. 2003;6:603鈥?0. CrossRef
    34. Ogasawara S, Shimada N, Kawata T. Role of an expansin-like molecule in / Dictyostelium morphogenesis and regulation of its gene expression by the signal transducer and activator of transcription protein Dd-STATa. Dev Growth Differ. 2009;51:109鈥?2. CrossRef
    35. Sawai S, Guan XJ, Kuspa A, Cox EC. High-throughput analysis of spatio-temporal dynamics in / Dictyostelium. Genome Biol. 2008;8:R144. CrossRef
    36. Kessin RH. Two different genomes that produce the same result. Genome Biol. 2010;11:114. CrossRef
    37. Cabral M, Anjard C, Loomis WF, Kuspa A. Genetic evidence that the acyl coenzyme A binding protein AcbA and the serine protease/ABC transporter TagA function together in Dictyostelium discoideum cell differentiation. Eukaryot Cell. 2006;5:2024鈥?2. CrossRef
    38. Mohri K, Hata T, Kikuchi H, Oshima Y, Urushihara H. Defects in the synthetic pathway prevent DIF-1 mediated stalk lineage specification cascade in the non-differentiating social amoeba, Acytostelium subglobosum. Biology Open. 2014;3:553鈥?0. CrossRef
    39. Anjard C, Chang WT, Gross J, Nellen W. Production and activity of spore differentiation factors (SDFs) in / Dictyostelium. Development. 1998;125:4067鈥?5.
    40. Cabral M, Anjard C, Malhotra V, Loomis WF, Kuspa A. Unconventional secretion of AcbA in Dictyostelium discoideum through a vesicular intermediate. Eukaryot Cell. 2010;9:1009鈥?7. CrossRef
    41. Anjard C, Su Y, Loomis WF. Steroids initiate a signaling cascade that triggers rapid sporulation in / Dictyostelium. Development. 2009;136:803鈥?2. CrossRef
    42. Wang N, Soderbom F, Anjard C, Shaulsky G, Loomis WF. SDF-2 induction of terminal differentiation in / Dictyostelium discoideum is mediated by the membrane-spanning sensor kinase DhkA. Mol Cell Biol. 1999;19:4750鈥?.
    43. Huang X, Wang J, Aluru S, Yang SP, Hillier L. PCAP: a whole-genome assembly program. Genome Res. 2003;13:2164鈥?0. CrossRef
    44. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24:1384鈥?5. CrossRef
    45. Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, et al. De novo transcriptome assembly with ABySS. Bioinformatics. 2009;25:2872鈥?. CrossRef
    46. Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31. CrossRef
    47. Fey P, Dodson RJ, Basu S, Chisholm RL. One stop shop for everything Dictyostelium: dictyBase and the Dicty Stock Center in 2012. Methods Mol Biol. 2013;983:59鈥?2. CrossRef
    48. Li L, Stoeckert Jr CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178鈥?9. CrossRef
    49. Curk T, Demsar J, Xu Q, Leban G, Petrovic U, Bratko I, et al. Microarray data mining with visual programming. Bioinformatics. 2005;21:396鈥?. CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Social amoebae are lower eukaryotes that inhabit the soil. They are characterized by the construction of a starvation-induced multicellular fruiting body with a spore ball and supportive stalk. In most species, the stalk is filled with motile stalk cells, as represented by the model organism Dictyostelium discoideum, whose developmental mechanisms have been well characterized. However, in the genus Acytostelium, the stalk is acellular and all aggregated cells become spores. Phylogenetic analyses have shown that it is not an ancestral genus but has lost the ability to undergo cell differentiation. Results We performed genome and transcriptome analyses of Acytostelium subglobosum and compared our findings to other available dictyostelid genome data. Although A. subglobosum adopts a qualitatively different developmental program from other dictyostelids, its gene repertoire was largely conserved. Yet, families of polyketide synthase and extracellular matrix proteins have not expanded and a serine protease and ABC transporter B family gene, tagA, and a few other developmental genes are missing in the A. subglobosum lineage. Temporal gene expression patterns are astonishingly dissimilar from those of D. discoideum, and only a limited fraction of the ortholog pairs shared the same expression patterns, so that some signaling cascades for development seem to be disabled in A. subglobosum. Conclusions The absence of the ability to undergo cell differentiation in Acytostelium is accompanied by a small change in coding potential and extensive alterations in gene expression patterns.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700